Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 74(11): 1384-1390, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32627577

ABSTRACT

Interactions between epitaxial graphene grown on Si- and C-faces were investigated using Raman imaging and tip-enhanced Raman scattering (TERS). In the TERS spectrum, which has a spatial resolution exceeding the diffraction limit, a D band was observed not from graphene surface, but from the edges of the epitaxial graphene ribbons without a buffer layer, which interacts with SiC on the Si-face. In contrast, for a graphene micro-island on the C-face, the D band disappeared even on the edges where the C atoms were arranged in armchair configurations. The disappearance of the edge chirality via combination between the C atoms and SiC on the C-face is responsible for this phenomenon. The TERS signals from the C-face were weaker than those from the Si-face without the buffer layer. On the Si-face with a buffer layer, the graphene TERS signal was hardly observed. TERS enhancement was suppressed by interactions on the edges or by the buffer layer between the SiC and graphene on the C- or Si-face, respectively.

2.
Phys Chem Chem Phys ; 17(43): 28993-9, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26456383

ABSTRACT

Single-layer graphene microislands with smooth edges and no visible grain boundary were epitaxially grown on the C-face of 4H-SiC and then characterized at the nanoscale using tip-enhanced Raman spectroscopy (TERS). Although these graphene islands appear highly homogeneous in micro-Raman imaging, TERS reveals the nanoscale strain variation caused by ridge nanostructures. A G' band position shift up to 9 cm(-1) and a band broadening up to 30 cm(-1) are found in TERS spectra obtained from nanoridges, which is explained by the compressive strain relaxation mechanism. The small size and refined nature of the graphene islands help in minimizing the inhomogeneity caused by macroscale factors, and allow a comparative discussion of proposed mechanisms of nanoridge formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...