Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Adv Sci (Weinh) ; 11(12): e2306469, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38235614

ABSTRACT

In Alzheimer's disease (AD), dysfunctional mitochondrial metabolism is associated with synaptic loss, the major pathological correlate of cognitive decline. Mechanistic insight for this relationship, however, is still lacking. Here, comparing isogenic wild-type and AD mutant human induced pluripotent stem cell (hiPSC)-derived cerebrocortical neurons (hiN), evidence is found for compromised mitochondrial energy in AD using the Seahorse platform to analyze glycolysis and oxidative phosphorylation (OXPHOS). Isotope-labeled metabolic flux experiments revealed a major block in activity in the tricarboxylic acid (TCA) cycle at the α-ketoglutarate dehydrogenase (αKGDH)/succinyl coenzyme-A synthetase step, metabolizing α-ketoglutarate to succinate. Associated with this block, aberrant protein S-nitrosylation of αKGDH subunits inhibited their enzyme function. This aberrant S-nitrosylation is documented not only in AD-hiN but also in postmortem human AD brains versus controls, as assessed by two separate unbiased mass spectrometry platforms using both SNOTRAP identification of S-nitrosothiols and chemoselective-enrichment of S-nitrosoproteins. Treatment with dimethyl succinate, a cell-permeable derivative of a TCA substrate downstream to the block, resulted in partial rescue of mitochondrial bioenergetic function as well as reversal of synapse loss in AD-hiN. These findings have therapeutic implications that rescue of mitochondrial energy metabolism can ameliorate synaptic loss in hiPSC-based models of AD.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Humans , Alzheimer Disease/metabolism , Induced Pluripotent Stem Cells/metabolism , Energy Metabolism/physiology , Glycolysis , Neurons/metabolism
2.
Cell Chem Biol ; 30(8): 965-975.e6, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37478858

ABSTRACT

A causal relationship between mitochondrial metabolic dysfunction and neurodegeneration has been implicated in synucleinopathies, including Parkinson disease (PD) and Lewy body dementia (LBD), but underlying mechanisms are not fully understood. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons with mutation in the gene encoding α-synuclein (αSyn), we report the presence of aberrantly S-nitrosylated proteins, including tricarboxylic acid (TCA) cycle enzymes, resulting in activity inhibition assessed by carbon-labeled metabolic flux experiments. This inhibition principally affects α-ketoglutarate dehydrogenase/succinyl coenzyme-A synthetase, metabolizing α-ketoglutarate to succinate. Notably, human LBD brain manifests a similar pattern of aberrantly S-nitrosylated TCA enzymes, indicating the pathophysiological relevance of these results. Inhibition of mitochondrial energy metabolism in neurons is known to compromise dendritic length and synaptic integrity, eventually leading to neuronal cell death. Our evidence indicates that aberrant S-nitrosylation of TCA cycle enzymes contributes to this bioenergetic failure.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Synucleinopathies , Humans , Synucleinopathies/metabolism , Induced Pluripotent Stem Cells/metabolism , Parkinson Disease/metabolism , Neurons/metabolism , Brain/metabolism
3.
Cancer Metab ; 9(1): 40, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34861885

ABSTRACT

BACKGROUND: Kidney cancer is a common adult malignancy in the USA. Clear cell renal cell carcinoma (ccRCC), the predominant subtype of kidney cancer, is characterized by widespread metabolic changes. Urea metabolism is one such altered pathway in ccRCC. The aim of this study was to elucidate the contributions of urea cycle enzymes, argininosuccinate synthase 1 (ASS1), and argininosuccinate lyase (ASL) towards ccRCC progression. METHODS: We employed a combination of computational, genetic, and metabolomic tools along with in vivo animal models to establish a tumor-suppressive role for ASS1 and ASL in ccRCC. RESULTS: We show that the mRNA and protein expression of urea cycle enzymes ASS1 and ASL are reduced in ccRCC tumors when compared to the normal kidney. Furthermore, the loss of ASL in HK-2 cells (immortalized renal epithelial cells) promotes growth in 2D and 3D growth assays, while combined re-expression of ASS1 and ASL in ccRCC cell lines suppresses growth in 2D, 3D, and in vivo xenograft models. We establish that this suppression is dependent on their enzymatic activity. Finally, we demonstrate that conservation of cellular aspartate, regulation of nitric oxide synthesis, and pyrimidine production play pivotal roles in ASS1+ASL-mediated growth suppression in ccRCC. CONCLUSIONS: ccRCC tumors downregulate the components of the urea cycle including the enzymes argininosuccinate synthase 1 (ASS1) and argininosuccinate lyase (ASL). These cytosolic enzymes lie at a critical metabolic hub in the cell and are involved in aspartate catabolism and arginine and nitric oxide biosynthesis. Loss of ASS1 and ASL helps cells redirect aspartate towards pyrimidine synthesis and support enhanced proliferation. Additionally, reduced levels of ASS1 and ASL might help regulate nitric oxide (NO) generation and mitigate its cytotoxic effects. Overall, our work adds to the understanding of urea cycle enzymes in a context-independent of ureagenesis, their role in ccRCC progression, and uncovers novel potential metabolic vulnerabilities in ccRCC.

4.
Redox Biol ; 47: 102153, 2021 11.
Article in English | MEDLINE | ID: mdl-34610554

ABSTRACT

Protein cysteine residues are essential for protein folding, participate in enzymatic catalysis, and coordinate the binding of metal ions to proteins. Enzymatically catalyzed and redox-dependent post-translational modifications of cysteine residues are also critical for signal transduction and regulation of protein function and localization. S-nitrosylation, the addition of a nitric oxide equivalent to a cysteine residue, is a redox-dependent modification. In this study, we curated and analyzed four different studies that employed various chemoselective platforms coupled to mass spectrometry to precisely identify S-nitrosocysteine residues in mouse heart proteins. Collectively 1974 S-nitrosocysteine residues in 761 proteins were identified and 33.4% were identified in two or more studies. A core of 75 S-nitrosocysteine residues in 44 proteins were identified in all four studies. Bioinformatic analysis of each study indicated a significant enrichment of mitochondrial proteins participating in metabolism. Regulatory proteins in glycolysis, TCA cycle, oxidative phosphorylation and ATP production, long chain fatty acid ß-oxidation, and ketone and amino acid metabolism constitute the major functional pathways impacted by protein S-nitrosylation. In the cardiovascular system, nitric oxide signaling regulates vasodilation and cardiac muscle contractility. The meta-analysis of the proteomic data supports the hypothesis that nitric oxide signaling via protein S-nitrosylation is also a regulator of cardiomyocyte metabolism that coordinates fuel utilization to maximize ATP production. As such, protein cysteine S-nitrosylation represents a third functional dimension of nitric oxide signaling in the cardiovascular system to ensure optimal cardiac function.


Subject(s)
Proteomics , S-Nitrosothiols , Animals , Cysteine/analogs & derivatives , Cysteine/metabolism , Metabolic Networks and Pathways , Mice , Nitric Oxide/metabolism , Protein Processing, Post-Translational
5.
Nitric Oxide ; 117: 1-6, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34536587

ABSTRACT

Cysteine S-nitrosation mediates NO signaling and protein function under pathophysiological conditions. Herein, we provide a detailed protocol regarding the organic mercury chemoselective enrichment of S-nitrosated proteins and peptides. We discuss key aspects of the enrichment strategy and provide technical tips for the best performance of the experimental protocol.


Subject(s)
Mercury/chemistry , Nitrates , Proteins , Proteomics/methods , Chromatography , Cysteine/analysis , Cysteine/isolation & purification , Cysteine/metabolism , Nitrates/analysis , Nitrates/isolation & purification , Nitrates/metabolism , Nitric Oxide/metabolism , Nitrosation , Peptides/analysis , Peptides/isolation & purification , Peptides/metabolism , Proteins/analysis , Proteins/isolation & purification , Proteins/metabolism
6.
ESC Heart Fail ; 8(4): 2698-2712, 2021 08.
Article in English | MEDLINE | ID: mdl-33991175

ABSTRACT

AIMS: Skeletal muscle (SkM) abnormalities may impact exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF). We sought to quantify differences in SkM oxidative phosphorylation capacity (OxPhos), fibre composition, and the SkM proteome between HFpEF, hypertensive (HTN), and healthy participants. METHODS AND RESULTS: Fifty-nine subjects (20 healthy, 19 HTN, and 20 HFpEF) performed a maximal-effort cardiopulmonary exercise test to define peak oxygen consumption (VO2, peak ), ventilatory threshold (VT), and VO2 efficiency (ratio of total work performed to O2 consumed). SkM OxPhos was assessed using Creatine Chemical-Exchange Saturation Transfer (CrCEST, n = 51), which quantifies unphosphorylated Cr, before and after plantar flexion exercise. The half-time of Cr recovery (t1/2, Cr ) was taken as a metric of in vivo SkM OxPhos. In a subset of subjects (healthy = 13, HTN = 9, and HFpEF = 12), percutaneous biopsy of the vastus lateralis was performed for myofibre typing, mitochondrial morphology, and proteomic and phosphoproteomic analysis. HFpEF subjects demonstrated lower VO2,peak , VT, and VO2 efficiency than either control group (all P < 0.05). The t1/2, Cr was significantly longer in HFpEF (P = 0.005), indicative of impaired SkM OxPhos, and correlated with cycle ergometry exercise parameters. HFpEF SkM contained fewer Type I myofibres (P = 0.003). Proteomic analyses demonstrated (a) reduced levels of proteins related to OxPhos that correlated with exercise capacity and (b) reduced ERK signalling in HFpEF. CONCLUSIONS: Heart failure with preserved ejection fraction patients demonstrate impaired functional capacity and SkM OxPhos. Reductions in the proportions of Type I myofibres, proteins required for OxPhos, and altered phosphorylation signalling in the SkM may contribute to exercise intolerance in HFpEF.


Subject(s)
Heart Failure , Exercise Tolerance , Heart Failure/diagnosis , Heart Failure/metabolism , Humans , Muscle, Skeletal/metabolism , Oxygen Consumption , Proteomics , Stroke Volume
8.
J Neurovirol ; 27(3): 367-378, 2021 06.
Article in English | MEDLINE | ID: mdl-33876414

ABSTRACT

In the brain, both HIV-1 and methamphetamine (meth) use result in increases in oxidative and nitrosative stress. This redox stress is thought to contribute to the pathogenesis of HIV-associated neurocognitive disorder (HAND) and further worsening cognitive activity in the setting of drug abuse. One consequence of such redox stress is aberrant protein S-nitrosylation, derived from nitric oxide, which may disrupt normal protein activity. Here, we report an improved, mass spectrometry-based technique to assess S-nitrosylated protein in human postmortem brains using selective enrichment of S-nitrosocysteine residues with an organomercury resin. The data show increasing S-nitrosylation of tricarboxylic acid (TCA) enzymes in the setting of HAND and HAND/meth use compared with HIV+ control brains without CNS pathology. The consequence is systematic inhibition of multiple TCA cycle enzymes, resulting in energy collapse that can contribute to the neuronal and synaptic damage observed in HAND and meth use.


Subject(s)
Citric Acid Cycle/drug effects , Cognitive Dysfunction/metabolism , HIV Infections/metabolism , Methamphetamine/adverse effects , Protein Processing, Post-Translational , Substance-Related Disorders/metabolism , Autopsy , Biological Specimen Banks , Brain/drug effects , Brain/enzymology , Brain/pathology , Citric Acid Cycle/genetics , Cognitive Dysfunction/complications , Cognitive Dysfunction/pathology , Cognitive Dysfunction/virology , Cysteine/analogs & derivatives , Cysteine/metabolism , HIV Infections/complications , HIV Infections/pathology , HIV Infections/virology , HIV-1/growth & development , HIV-1/pathogenicity , Humans , Male , Middle Aged , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/pathology , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Nitric Oxide/metabolism , S-Nitrosothiols/metabolism , Substance-Related Disorders/complications , Substance-Related Disorders/pathology , Substance-Related Disorders/virology , Synapses/drug effects , Synapses/pathology
9.
Nitric Oxide ; 106: 17-23, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33080411

ABSTRACT

BACKGROUND: Chronic Kidney Disease (CKD) patients exhibit a reduced exercise capacity that impacts quality of life. Dietary nitrate supplementation has been shown to have favorable effects on exercise capacity in disease populations by reducing the oxygen cost of exercise. This study investigated whether dietary nitrates would acutely improve exercise capacity in CKD patients. METHODS AND RESULTS: In this randomized, double-blinded crossover study, 12 Stage 3-4 CKD patients (Mean ± SEM: Age, 60 ± 5yrs; eGFR, 50.3 ± 4.6 ml/min/1.73 m2) received an acute dose of 12.6 mmol of dietary nitrate in the form of concentrated beetroot juice (BRJ) and a nitrate depleted placebo (PLA). Skeletal muscle mitochondrial oxidative function was assessed using near-infrared spectroscopy. Cardiopulmonary exercise testing was performed on a cycle ergometer, with intensity increased by 25 W every 3 min until volitional fatigue. Plasma nitric oxide (NO) metabolites (NOm; nitrate, nitrite, low molecular weight S-nitrosothiols, and metal bound NO) were determined by gas-phase chemiluminescence. Plasma NOm values were significantly increased following BRJ (BRJ vs. PLA: 1074.4 ± 120.4 µM vs. 28.4 ± 6.6 µM, p < 0.001). Total work performed (44.4 ± 10.6 vs 39.6 ± 9.9 kJ, p = 0.03) and total exercise time (674 ± 85 vs 627 ± 86s, p = 0.04) were significantly greater following BRJ. Oxygen consumption at the ventilatory threshold was also improved by BRJ (0.90 ± 0.08 vs. 0.74 ± 0.06 L/min, p = 0.04). These changes occurred in the absence of improved skeletal muscle mitochondrial oxidative capacity (p = 0.52) and VO2peak (p = 0.35). CONCLUSIONS: Our findings demonstrate that inorganic nitrate can acutely improve exercise capacity in CKD patients. The effects of chronic nitrate supplementation on CKD related exercise intolerance should be investigated in future studies.


Subject(s)
Exercise Tolerance/drug effects , Nitrates/therapeutic use , Renal Insufficiency, Chronic/diet therapy , Adult , Aged , Beta vulgaris/chemistry , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Exercise Test/drug effects , Female , Fruit and Vegetable Juices , Humans , Male , Middle Aged , Muscle, Skeletal/drug effects , Pilot Projects
10.
Cell Rep ; 33(5): 108329, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33147468

ABSTRACT

The regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking affects multiple brain functions, such as learning and memory. We have previously shown that Thorase plays an important role in the internalization of AMPARs from the synaptic membrane. Here, we show that N-methyl-d-aspartate receptor (NMDAR) activation leads to increased S-nitrosylation of Thorase and N-ethylmaleimide-sensitive factor (NSF). S-nitrosylation of Thorase stabilizes Thorase-AMPAR complexes and enhances the internalization of AMPAR and interaction with protein-interacting C kinase 1 (PICK1). S-nitrosylated NSF is dependent on the S-nitrosylation of Thorase via trans-nitrosylation, which modulates the surface insertion of AMPARs. In the presence of the S-nitrosylation-deficient C137L Thorase mutant, AMPAR trafficking, long-term potentiation, and long-term depression are impaired. Overall, our data suggest that both S-nitrosylation and interactions of Thorase and NSF/PICK1 are required to modulate AMPAR-mediated synaptic plasticity. This study provides critical information that elucidates the mechanism underlying Thorase and NSF-mediated trafficking of AMPAR complexes.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Cell Membrane/metabolism , N-Ethylmaleimide-Sensitive Proteins/metabolism , Receptors, AMPA/metabolism , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Animals , Cell Cycle Proteins/metabolism , Cysteine/metabolism , Endocytosis/drug effects , Glutathione/metabolism , HEK293 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , N-Methylaspartate/pharmacology , Neuronal Plasticity , Nitric Oxide/metabolism , Nitrosation , Protein Binding , Protein Multimerization , Protein Transport , S-Nitrosoglutathione/metabolism
11.
F1000Res ; 92020.
Article in English | MEDLINE | ID: mdl-33042519

ABSTRACT

Nitric oxide is an endogenously formed gas that acts as a signaling molecule in the human body. The signaling functions of nitric oxide are accomplished through two primer mechanisms: cGMP-mediated phosphorylation and the formation of S-nitrosocysteine on proteins. This review presents and discusses previous and more recent findings documenting that nitric oxide signaling regulates metabolic activity. These discussions primarily focus on endothelial nitric oxide synthase (eNOS) as the source of nitric oxide.


Subject(s)
Nitric Oxide Synthase Type III/physiology , Nitric Oxide/physiology , Signal Transduction , Humans
12.
Int J Mol Sci ; 21(3)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033212

ABSTRACT

The placenta is metabolically active and supports the growth of the fetus. We hypothesize that deficits in the capacity of the placenta to maintain bioenergetic and metabolic stability during pregnancy may result in spontaneous preterm birth (SPTB). To explore this hypothesis, we performed a nested cased control study of metabolomic signatures in placentas from women with SPTB (<36 weeks gestation) compared to normal pregnancies (≥38 weeks gestation). To control for the effects of gestational age on placenta metabolism, we also studied a subset of metabolites in non-laboring preterm and term Rhesus monkeys. Comprehensive quantification of metabolites demonstrated a significant elevation in the levels of amino acids, prostaglandins, sphingolipids, lysolipids, and acylcarnitines in SPTB placenta compared to term placenta. Additional quantification of placental acylcarnitines by tandem mass spectrometry confirmed the significant elevation in SPTB human, with no significant differences between midgestation and term placenta in Rhesus macaque. Fatty acid oxidation as measured by the flux of 3H-palmitate in SPTB placenta was lower than term. Collectively, significant and biologically relevant alterations in the placenta metabolome were identified in SPTB placenta. Altered acylcarnitine levels and fatty acid oxidation suggest that disruption in normal substrate metabolism is associated with SPTB.


Subject(s)
Placenta/metabolism , Premature Birth/metabolism , Adult , Case-Control Studies , Female , Fetus/metabolism , Gestational Age , Humans , Infant, Newborn , Metabolomics/methods , Pregnancy
13.
Curr Protoc Protein Sci ; 94(1): e69, 2018 11.
Article in English | MEDLINE | ID: mdl-30281936

ABSTRACT

The wide reactivity of the thiol group enables the formation of a variety of reversible, covalent modifications on cysteine residues. S-nitrosylation, like many other post-translational modifications, is site selective, reversible, and necessary for a wide variety of fundamental cellular processes. The overall abundance of S-nitrosylated proteins and reactivity of the nitrosyl group necessitates an enrichment strategy for accurate detection with adequate depth. Herein, a method is presented for the enrichment and detection of endogenous protein S-nitrosylation from complex mixtures of cell or tissue lysate utilizing organomercury resin. Minimal adaptations to the method also support the detection of either S-glutathionylation or S-acylation using the same enrichment platform. When coupled with high accuracy mass spectrometry, these methods enable a site-specific level of analysis, facilitating the curation comparable datasets of three separate cysteine post-translational modifications. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Cysteine/analysis , Organomercury Compounds/chemistry , Protein Processing, Post-Translational , Resins, Synthetic/chemistry , Animals , Cysteine/chemistry , Humans
14.
mBio ; 9(4)2018 08 14.
Article in English | MEDLINE | ID: mdl-30108168

ABSTRACT

Nitric oxide (NO·) produced by mammalian cells exerts antimicrobial actions that result primarily from the modification of protein thiols (S-nitrosylation) and metal centers. A comprehensive approach was used to identify novel targets of NO· in Salmonella enterica serovar Typhimurium (S. Typhimurium). Newly identified targets include zinc metalloproteins required for DNA replication and repair (DnaG, PriA, and TopA), protein synthesis (AlaS and RpmE), and various metabolic activities (ClpX, GloB, MetE, PepA, and QueC). The cytotoxic actions of free zinc are mitigated by the ZntA and ZitB zinc efflux transporters, which are required for S. Typhimurium resistance to zinc overload and nitrosative stress in vitro Zinc efflux also ameliorates NO·-dependent zinc mobilization following internalization by activated macrophages and is required for virulence in NO·-producing mice, demonstrating that host-derived NO· causes zinc stress in intracellular bacteria.IMPORTANCE Nitric oxide (NO·) is produced by macrophages in response to inflammatory stimuli and restricts the growth of intracellular bacteria. Mechanisms of NO·-dependent antimicrobial actions are incompletely understood. Here, we show that zinc metalloproteins are important targets of NO· in Salmonella, including the DNA replication proteins DnaG and PriA, which were hypothesized to be NO· targets in earlier studies. Like iron, zinc is a cofactor for several essential proteins but is toxic at elevated concentrations. This study demonstrates that NO· mobilizes free zinc in Salmonella and that specific efflux transporters ameliorate the cytotoxic effects of free zinc during infection.


Subject(s)
Anti-Bacterial Agents/metabolism , Homeostasis/drug effects , Nitric Oxide/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/metabolism , Zinc/metabolism , Zinc/toxicity , Animals , Macrophages/immunology , Mice , Microbial Viability , RAW 264.7 Cells , Salmonella Infections, Animal/immunology
15.
JCI Insight ; 3(16)2018 08 23.
Article in English | MEDLINE | ID: mdl-30135317

ABSTRACT

Alterations in the synthesis and bioavailability of NO are central to the pathogenesis of cardiovascular and metabolic disorders. Although endothelial NO synthase-derived (eNOS-derived) NO affects mitochondrial long-chain fatty acid ß-oxidation, the pathophysiological significance of this regulation remains unclear. Accordingly, we determined the contributions of eNOS/NO signaling in the adaptive metabolic responses to fasting and in age-induced metabolic dysfunction. Four-month-old eNOS-/- mice are glucose intolerant and exhibit serum dyslipidemia and decreased capacity to oxidize fatty acids. However, during fasting, eNOS-/- mice redirect acetyl-CoA to ketogenesis to elevate circulating levels of ß-hydroxybutyrate similar to wild-type mice. Treatment of 4-month-old eNOS-/- mice with nitrite for 10 days corrected the hypertension and serum hyperlipidemia and normalized the rate of fatty acid oxidation. Fourteen-month-old eNOS-/- mice exhibited metabolic derangements, resulting in reduced utilization of fat to generate energy, lower resting metabolic activity, and diminished physical activity. Seven-month administration of nitrite to eNOS-/- mice reversed the age-dependent metabolic derangements and restored physical activity. While the eNOS/NO signaling is not essential for the metabolic adaptation to fasting, it is critical for regulating systemic metabolic homeostasis in aging. The development of age-dependent metabolic disorder is prevented by low-dose replenishment of bioactive NO.


Subject(s)
Aging/metabolism , Homeostasis/drug effects , Nitric Oxide Synthase Type III/deficiency , Sodium Nitrite/administration & dosage , Administration, Oral , Aging/drug effects , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Fasting/metabolism , Humans , Hyperlipidemias/drug therapy , Hyperlipidemias/genetics , Hyperlipidemias/metabolism , Hypertension/drug therapy , Hypertension/genetics , Hypertension/metabolism , Male , Mice , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Signal Transduction/drug effects , Time Factors , Treatment Outcome
16.
Cell ; 174(4): 831-842.e12, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30057115

ABSTRACT

Overnutrition disrupts circadian metabolic rhythms by mechanisms that are not well understood. Here, we show that diet-induced obesity (DIO) causes massive remodeling of circadian enhancer activity in mouse liver, triggering synchronous high-amplitude circadian rhythms of both fatty acid (FA) synthesis and oxidation. SREBP expression was rhythmically induced by DIO, leading to circadian FA synthesis and, surprisingly, FA oxidation (FAO). DIO similarly caused a high-amplitude circadian rhythm of PPARα, which was also required for FAO. Provision of a pharmacological activator of PPARα abrogated the requirement of SREBP for FAO (but not FA synthesis), suggesting that SREBP indirectly controls FAO via production of endogenous PPARα ligands. The high-amplitude rhythm of PPARα imparted time-of-day-dependent responsiveness to lipid-lowering drugs. Thus, acquisition of rhythmicity for non-core clock components PPARα and SREBP1 remodels metabolic gene transcription in response to overnutrition and enables a chronopharmacological approach to metabolic disorders.


Subject(s)
Circadian Rhythm , Diet/adverse effects , Liver/metabolism , Obesity/metabolism , PPAR alpha/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Animals , Gene Expression Regulation , Lipid Metabolism , Lipogenesis , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/pathology , PPAR alpha/genetics , Sterol Regulatory Element Binding Protein 1/genetics
17.
Cell Host Microbe ; 23(5): 594-606.e7, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29706505

ABSTRACT

Staphylococcus aureus is a commensal bacterium that can asymptomatically colonize its host but also causes invasive infections. Quorum sensing regulates S. aureus virulence and the transition from a commensal to a pathogenic organism. However, little is known about how host innate immunity affects interbacterial communication. We show that nitric oxide suppresses staphylococcal virulence by targeting the Agr quorum sensing system. Nitric oxide-mediated inhibition occurs through direct modification of cysteine residues C55, C123, and C199 of the AgrA transcription factor. Cysteine modification decreases AgrA promoter occupancy as well as transcription of the agr operon and quorum sensing-activated toxin genes. In a staphylococcal pneumonia model, mice lacking inducible nitric oxide synthase develop more severe disease with heightened mortality and proinflammatory cytokine responses. In addition, staphylococcal α-toxin production increases in the absence of nitric oxide or nitric oxide-sensitive AgrA cysteine residues. Our findings demonstrate an anti-virulence mechanism for nitric oxide in innate immunity.


Subject(s)
Cell Communication/immunology , Cell Communication/physiology , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/physiology , Nitric Oxide/antagonists & inhibitors , Staphylococcus/drug effects , Staphylococcus/pathogenicity , Animals , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cysteine , Cytokines/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Hemolysin Proteins/metabolism , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type II/genetics , Operon , Pneumonia, Staphylococcal/metabolism , Pneumonia, Staphylococcal/pathology , Promoter Regions, Genetic/drug effects , Quorum Sensing/drug effects , Quorum Sensing/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Trans-Activators/metabolism , Transcription Factors/drug effects , Virulence/drug effects
18.
J Clin Invest ; 127(6): 2407-2417, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28481222

ABSTRACT

Genetic variants at the solute carrier family 39 member 8 (SLC39A8) gene locus are associated with the regulation of whole-blood manganese (Mn) and multiple physiological traits. SLC39A8 encodes ZIP8, a divalent metal ion transporter best known for zinc transport. Here, we hypothesized that ZIP8 regulates Mn homeostasis and Mn-dependent enzymes to influence metabolism. We generated Slc39a8-inducible global-knockout (ZIP8-iKO) and liver-specific-knockout (ZIP8-LSKO) mice and observed markedly decreased Mn levels in multiple organs and whole blood of both mouse models. By contrast, liver-specific overexpression of human ZIP8 (adeno-associated virus-ZIP8 [AAV-ZIP8]) resulted in increased tissue and whole blood Mn levels. ZIP8 expression was localized to the hepatocyte canalicular membrane, and bile Mn levels were increased in ZIP8-LSKO and decreased in AAV-ZIP8 mice. ZIP8-LSKO mice also displayed decreased liver and kidney activity of the Mn-dependent enzyme arginase. Both ZIP8-iKO and ZIP8-LSKO mice had defective protein N-glycosylation, and humans homozygous for the minor allele at the lead SLC39A8 variant showed hypogalactosylation, consistent with decreased activity of another Mn-dependent enzyme, ß-1,4-galactosyltransferase. In summary, hepatic ZIP8 reclaims Mn from bile and regulates whole-body Mn homeostasis, thereby modulating the activity of Mn-dependent enzymes. This work provides a mechanistic basis for the association of SLC39A8 with whole-blood Mn, potentially linking SLC39A8 variants with other physiological traits.


Subject(s)
Cation Transport Proteins/physiology , Liver/enzymology , Manganese/metabolism , N-Acetyllactosamine Synthase/metabolism , Animals , Arginase/metabolism , Bile/metabolism , Female , Glycosylation , HEK293 Cells , Homeostasis , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Protein Processing, Post-Translational
19.
Circ Res ; 120(7): 1151-1161, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-27927683

ABSTRACT

RATIONALE: Nitrate-rich beetroot juice has been shown to improve exercise capacity in heart failure with preserved ejection fraction, but studies using pharmacological preparations of inorganic nitrate are lacking. OBJECTIVES: To determine (1) the dose-response effect of potassium nitrate (KNO3) on exercise capacity; (2) the population-specific pharmacokinetic and safety profile of KNO3 in heart failure with preserved ejection fraction. METHODS AND RESULTS: We randomized 12 subjects with heart failure with preserved ejection fraction to oral KNO3 (n=9) or potassium chloride (n=3). Subjects received 6 mmol twice daily during week 1, followed by 6 mmol thrice daily during week 2. Supine cycle ergometry was performed at baseline (visit 1) and after each week (visits 2 and 3). Quality of life was assessed with the Kansas City Cardiomyopathy Questionnaire. The primary efficacy outcome, peak O2-uptake, did not significantly improve (P=0.13). Exploratory outcomes included exercise duration and quality of life. Exercise duration increased significantly with KNO3 (visit 1: 9.87, 95% confidence interval [CI] 9.31-10.43 minutes; visit 2: 10.73, 95% CI 10.13-11.33 minute; visit 3: 11.61, 95% CI 11.05-12.17 minutes; P=0.002). Improvements in the Kansas City Cardiomyopathy Questionnaire total symptom (visit 1: 58.0, 95% CI 52.5-63.5; visit 2: 66.8, 95% CI 61.3-72.3; visit 3: 70.8, 95% CI 65.3-76.3; P=0.016) and functional status scores (visit 1: 62.2, 95% CI 58.5-66.0; visit 2: 68.6, 95% CI 64.9-72.3; visit 3: 71.1, 95% CI 67.3-74.8; P=0.01) were seen after KNO3. Pronounced elevations in trough levels of nitric oxide metabolites occurred with KNO3 (visit 2: 199.5, 95% CI 98.7-300.2 µmol/L; visit 3: 471.8, 95% CI 377.8-565.8 µmol/L) versus baseline (visit 1: 38.0, 95% CI 0.00-132.0 µmol/L; P<0.001). KNO3 did not lead to clinically significant hypotension or methemoglobinemia. After 6 mmol of KNO3, systolic blood pressure was reduced by a maximum of 17.9 (95% CI -28.3 to -7.6) mm Hg 3.75 hours later. Peak nitric oxide metabolites concentrations were 259.3 (95% CI 176.2-342.4) µmol/L 3.5 hours after ingestion, and the median half-life was 73.0 (interquartile range 33.4-232.0) minutes. CONCLUSIONS: KNO3 is potentially well tolerated and improves exercise duration and quality of life in heart failure with preserved ejection fraction. This study reinforces the efficacy of KNO3 and suggests that larger randomized trials are warranted. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02256345.


Subject(s)
Heart Failure/drug therapy , Nitrates/pharmacokinetics , Potassium Compounds/pharmacokinetics , Stroke Volume , Aged , Exercise , Female , Heart Failure/diagnosis , Heart Failure/rehabilitation , Humans , Male , Middle Aged , Nitrates/adverse effects , Potassium Compounds/adverse effects , Quality of Life
20.
J Am Heart Assoc ; 5(10)2016 10 14.
Article in English | MEDLINE | ID: mdl-27742619

ABSTRACT

BACKGROUND: Stable plasma nitric oxide (NO) metabolites (NOM), composed predominantly of nitrate and nitrite, are attractive biomarkers of NO bioavailability. NOM levels integrate the influence of NO-synthase-derived NO production/metabolism, dietary intake of inorganic nitrate/nitrite, and clearance of NOM. Furthermore, nitrate and nitrite, the most abundant NOM, can be reduced to NO via the nitrate-nitrite-NO pathway. METHODS AND RESULTS: We compared serum NOM among subjects without heart failure (n=126), subjects with heart failure and preserved ejection fraction (HFpEF; n=43), and subjects with heart failure and reduced ejection fraction (HFrEF; n=32). LV mass and extracellular volume fraction were measured with cardiac MRI. Plasma NOM levels were measured after reduction to NO via reaction with vanadium (III)/hydrochloric acid. Subjects with HFpEF demonstrated significantly lower unadjusted levels of NOM (8.0 µmol/L; 95% CI 6.2-10.4 µmol/L; ANOVA P=0.013) than subjects without HF (12.0 µmol/L; 95% CI 10.4-13.9 µmol/L) or those with HFrEF (13.5 µmol/L; 95% CI 9.7-18.9 µmol/L). There were no significant differences in NOM between subjects with HFrEF and subjects without HF. In a multivariable model that adjusted for age, sex, race, diabetes mellitus, body mass index, current smoking, systolic blood pressure, and glomerular filtration rate, HFpEF remained a predictor of lower NOM (ß=-0.43; P=0.013). NOM did not correlate with LV mass, or LV diffuse fibrosis. CONCLUSIONS: HFpEF, but not HFrEF, is associated with reduced plasma NOM, suggesting greater endothelial dysfunction, enhanced clearance, or deficient dietary ingestion of inorganic nitrate. Our findings may underlie the salutary effects of inorganic nitrate supplementation demonstrated in recent clinical trials in HFpEF.


Subject(s)
Heart Failure/blood , Hypertrophy, Left Ventricular/blood , Nitric Oxide/blood , Ventricular Remodeling , Aged , Case-Control Studies , Female , Fibrosis , Heart/diagnostic imaging , Heart Failure/physiopathology , Humans , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Myocardium/pathology , Nitric Oxide/metabolism , Organ Size , Prospective Studies , Stroke Volume , United States , United States Department of Veterans Affairs
SELECTION OF CITATIONS
SEARCH DETAIL
...