Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 241: 115689, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37716158

ABSTRACT

The onsite detection of glyphosate requires an easy-to-handle, low-cost and disposable assay for untrained users as requested by the ASSURED guidelines. A new strategy based on the expression of fusion proteins is proposed here. A glyphosate oxidase derived from Bacillus subtilis and the 6E10 variant of the dye peroxidase from Pseudomonas putida, both fused with the carbohydrate binding module (CBM) 3a from Clostridium thermocellum, were designed and expressed, leading to GlyphOx-CBM and 6E10-CBM. Cell lysates were used to immobilise both enzymes on cotton buds' heads without any purification. The cotton buds exhibit glyphosate oxidase activity when dipped into a glyphosate-contaminated water sample containing the 6E10-CBM chromogenic substrates. The chromophore could be quantified both in the solution and on the cotton buds' heads. Photography followed by image analysis allows to detect glyphosate with a linear range of 0.25-2.5 mM and a limit of detection (LoD) of 0.12 mM. When the chromogenic substrates are replaced by luminol, the chemiluminescence reaction allows the detection of glyphosate with a linear range of 2-500 µM and a LoD of 0.45 µM. No interference was observed using glyphosate analogues (glycine, sarcosine, aminomethylphosphonic acid) or other herbicides used in a mixture. Only cysteine was found to inhibit 6E10-CBM. Two river waters spiked with glyphosate lead to recoveries of 64-131%. This work describes a very easy-to-handle and inexpensive signal-on bioassay for glyphosate detection in real surface water samples.

2.
Water Sci Technol ; 55(8-9): 219-25, 2007.
Article in English | MEDLINE | ID: mdl-17546990

ABSTRACT

The efficiency of cleaning procedures to remove the fouling deposit from the surface of NF membranes operating in the drinking water plant of Méry sur Oise (Val d'Oise, France) was assessed by a combination of chemical analysis and fluorescence microscopy. The ATR-FTIR spectra of the fouled membranes revealed the presence of biological matter at the membrane surface, mainly composed of polysaccharides, nucleic acids and proteins. IR bands corresponding to the membrane material were detected for stage 1 but not for stage 3. Confocal laser scanning microscopy (CLSM) observations confirmed the microbial origin of the fouling deposit. After chemical cleaning, the analysis of the inorganic foulants revealed a significant decrease of the inorganic content. Moreover, ATR-FTIR spectra of the fouled membranes were modified, mainly in a broad complex region corresponding to polysaccharides and nucleic acids. The amide bands were also altered for stage 1, and some peaks corresponding to the clean membrane appeared for stage 3 after cleaning. CLSM observations revealed a general decrease of the lectin staining for the two stages with some variations between lectins. A decrease of the DAPI staining indicative of the removal of some microbial cells was also observed for stage 1. In conclusion, cleaning of the NF fouled membranes decreased significantly the inorganic foulants but only partially removed the organic fouling deposit characteristic of a microbial biofilm.


Subject(s)
Membranes, Artificial , Water Pollutants/analysis , Water Purification/methods , Citric Acid/chemistry , Lectins/chemistry , Microscopy, Fluorescence , Polysaccharides/chemistry , Spectrophotometry, Atomic , Spectroscopy, Fourier Transform Infrared , Ultrafiltration , Water Supply
3.
J Microencapsul ; 21(5): 565-73, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15513762

ABSTRACT

The water loss of Ca-alginate hydrogels at pHs below 4.0 was visualized with 1HNMR-imaging by covering a single alginate bead with cyclohexane-d12 in a specially equipped NMR-tube and adding propionic acid at defined concentrations. The exact amount of water expelled from the beads was calculated from their weight loss and correlated with the acid concentrations and pHs within the hydrogel matrix. The maximum water loss of 52% (w/w) occurred at pH 1.0, while only 5% (w/w) of the initial water content were lost at pH 3.6. The analysis of the water collected from several alginate beads for Ca2+ -ions and free polysaccharides led to the assumption that, due to the acid-induced protonation of the carboxyl functions, the ionotropic network is gradually converted to an alginic acid gel structured by H-bonds. This contradicts existing theories explaining the pH-induced water loss by a lower solubility of the alginate chains and decreased repulsion between protonated carboxyl functions, but explains previously reported pH-dependent alterations of mass transport and drug retention of Ca-alginate gels. Thus, the presented experiments enable a more precise and complete view of the acid-induced process within Ca-alginate hydrogels. The transfer to the characterization of other hydrogels is possible and should be advantageous, especially if a calibration of the NMR-measurement could be achieved.


Subject(s)
Desiccation , Hydrogels , Alginates , Drug Compounding/methods , Glucuronic Acid , Hexuronic Acids , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Microspheres
SELECTION OF CITATIONS
SEARCH DETAIL
...