Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Aquat Organ ; 134(3): 223-236, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31169128

ABSTRACT

Transmission is a fundamental component of pathogen fitness. A better understanding of pathogen transmission can greatly improve disease management. In particular, controlled studies of multiple rounds of natural transmission (i.e. serial passage) can provide powerful epidemiological and evolutionary inferences. However, such studies are possible in only a few systems because of the challenges in successfully initiating and maintaining transmission in the laboratory. Here we developed an efficient and reproducible cohabitation method for conducting controlled experiments investigating the effects of serial passage on infectious hematopoietic necrosis virus (IHNV) in rainbow trout. This method was used to investigate the transmission efficiency and kinetics of viral shedding of IHNV over 3 serial passages. Transmission efficiency decreased from 100 to 62.5% over the passage steps and was associated with a decrease in virus shedding into water. A shift in the peak of viral shedding was also observed, from Day 2 post immersion for passage 0 to at least 24 h later for all subsequent passages. Finally, the characterization of viruses after 1 round of transmission and propagation on cells showed no change in glycoprotein (G gene) sequences or viral virulence compared to the ancestral virus stock. The methods developed provide valuable tools for reproducible population-level studies of IHNV epidemiology and evolution.


Subject(s)
Fish Diseases , Infectious hematopoietic necrosis virus , Oncorhynchus mykiss , Rhabdoviridae Infections , Animals , Rhabdoviridae Infections/veterinary , Serial Passage
2.
J Virol Methods ; 240: 63-68, 2017 02.
Article in English | MEDLINE | ID: mdl-27915037

ABSTRACT

Pea enation mosaic virus 1 (PEMV1) and Pea enation mosaic virus 2 (PEMV2) are two viruses in an obligate symbiosis that cause pea enation mosaic disease mainly in plants in the Fabaceae family. This virus system is a valuable model to investigate plant virus replication, movement and vector transmission. Thus, here we describe growth conditions, virus detection methods, and virus accumulation behavior. To measure the accumulation and movement of PEMV1 and PEMV2 in plants during the course of infection, we developed a quantitative real-time one-step reverse transcription PCR procedure using the SYBR-green® technology. Viral primers were designed that anneal to conserved but distinct regions in the RNA-dependent RNA polymerase gene of each virus. Moreover, the normalization of viral accumulation was performed to correct for sample-to-sample variation by designing primers to two different Pisum sativum housekeeping genes: actin and ß-tubulin. Transcript levels for these housekeeping genes did not change significantly in response to PEMV infection. Conditions were established for maximum PCR efficiency for each gene, and quantification using QuBit® technology. Both viruses reached maximum accumulation around 21days post-inoculation of pea plants. These results provide valuable tools and knowledge to allow reproducible studies of this emerging model virus system virus complex.


Subject(s)
Luteoviridae/isolation & purification , Pisum sativum/virology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tombusviridae/isolation & purification , DNA Primers , Genes, Essential , Luteoviridae/classification , Luteoviridae/genetics , Luteoviridae/physiology , RNA, Viral/genetics , Tombusviridae/classification , Tombusviridae/genetics , Tombusviridae/physiology , Virus Replication
3.
Viruses ; 8(11)2016 11 18.
Article in English | MEDLINE | ID: mdl-27869713

ABSTRACT

Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae) and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.


Subject(s)
Aphids/virology , Capsid Proteins/metabolism , Host-Pathogen Interactions , Luteoviridae/physiology , Pisum sativum/virology , Tombusviridae/physiology , Animals , Capsid Proteins/genetics , DNA Mutational Analysis , Luteoviridae/genetics , Plant Leaves/virology , Tombusviridae/genetics , Virus Assembly , Virus Replication
4.
Virology ; 484: 346-353, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26186573

ABSTRACT

The genetic determinism of viral traits can generally be dissected using either forward or reverse genetics because the clonal reproduction of viruses does not require the use of approaches based on laboratory crosses. Nevertheless, we hypothesized that recombinant viruses could be analyzed as sexually reproducing organisms, using either a quantitative trait loci (QTL) approach or a locus-by-locus fixation index (FST). Locus-by-locus FST analysis, and four different regressions and interval mapping algorithms of QTL analysis were applied to a phenotypic and genotypic dataset previously obtained from 47 artificial recombinant genomes generated between two begomovirus species. Both approaches assigned the determinant of within-host accumulation-previously identified using standard virology approaches-to a region including the 5׳ end of the replication-associated protein (Rep) gene and the upstream intergenic region. This study provides a proof of principle that QTL and population genetics tools can be extended to characterize the genetic determinants of viral traits.


Subject(s)
Begomovirus/genetics , Chromosome Mapping/methods , Genetics, Microbial/methods , Quantitative Trait Loci , Genotype , Molecular Biology/methods , Phenotype , Recombination, Genetic
5.
Virus Res ; 176(1-2): 91-100, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23742852

ABSTRACT

Disease induced effects on host survival are important to understand the evolution of parasitic virulence and host resistance/tolerance. Unfortunately, experiments evaluating such effects are in most cases logistically demanding justifying the measurement of survival proxies. For plant hosts commonly used proxies are leaf area and the nature and severity of visual qualitative disease symptoms. In this study we tested whether these traits are indeed correlated to the host mortality rate induced by viral infection. We infected Brassica rapa and Arabidopsis thaliana plants with different natural isolates of Cauliflower mosaic virus (CaMV) and estimated over time the development of symptoms and the relative reduction of leaf area compared to healthy plants and followed plant mortality. We observed that the mortality of infected plants was correlated with the relative reduction of leaf area of both B. rapa and A. thaliana. Measures of mortality were also correlated with the severity of visual qualitative symptoms but the magnitude of the correlations and the time frame at which they were significant depended on the host plant: stronger and earlier correlations were observed on A. thaliana.


Subject(s)
Arabidopsis/virology , Biomarkers , Brassica rapa/virology , Caulimovirus/growth & development , Plant Diseases/virology , Plant Leaves/virology , Arabidopsis/physiology , Brassica rapa/physiology , Plant Leaves/physiology , Survival Analysis , Time Factors
6.
PLoS One ; 8(3): e58375, 2013.
Article in English | MEDLINE | ID: mdl-23472190

ABSTRACT

Tomato yellow leaf curl virus (TYLCV) is a highly damaging begomovirus native to the Middle East. TYLCV has recently spread worldwide, recombining with other begomoviruses. Recent analysis of mixed infections between TYLCV and Tomato leaf curl Comoros begomovirus (ToLCKMV) has shown that, although natural selection preserves certain co-evolved intra-genomic interactions, numerous and diverse recombinants are produced at 120 days post-inoculation (dpi), and recombinant populations from different tomato plants are very divergent. Here, we investigate the population dynamics that lead to such patterns in tomato plants co-infected with TYLCV and ToLCKMV either by agro-inoculation or using the natural whitefly vector Bemisia tabaci. We monitored the frequency of parental and recombinant genotypes independently in 35 plants between 18 and 330 dpi and identified 177 recombinants isolated at different times. Recombinants were detected from 18 dpi and their frequency increased over time to reach about 50% at 150 dpi regardless of the inoculation method. The distribution of breakpoints detected on 96 fully sequenced recombinants was consistent with a continuous generation of new recombinants as well as random and deterministic effects in their maintenance. A severe population bottleneck of around 10 genomes was estimated during early systemic infection-a phenomenon that could account partially for the heterogeneity in recombinant patterns observed among plants. The detection of the same recombinant genome in six of the thirteen plants analysed beyond 30 dpi supported the influence of selection on observed recombination patterns. Moreover, a highly virulent recombinant genotype dominating virus populations within one plant has, apparently, the potential to be maintained in the natural population according to its infectivity, within-host accumulation, and transmission efficiency - all of which were similar or intermediate to those of the parent genotypes. Our results anticipate the outcomes of natural encounters between TYLCV and ToLCKMV.


Subject(s)
Begomovirus/genetics , Evolution, Molecular , Genome, Viral , Plant Leaves/virology , Solanum lycopersicum/virology , Animals , Begomovirus/physiology , Genomics , Genotype , Hemiptera/virology , Plant Diseases/virology , Recombination, Genetic , Virulence
7.
Elife ; 2: e00183, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23358702

ABSTRACT

Many plant and animal viruses are spread by insect vectors. Cauliflower mosaic virus (CaMV) is aphid-transmitted, with the virus being taken up from specialized transmission bodies (TB) formed within infected plant cells. However, the precise events during TB-mediated virus acquisition by aphids are unknown. Here, we show that TBs react instantly to the presence of the vector by ultra-rapid and reversible redistribution of their key components onto microtubules throughout the cell. Enhancing or inhibiting this TB reaction pharmacologically or by using a mutant virus enhanced or inhibited transmission, respectively, confirming its requirement for efficient virus-acquisition. Our results suggest that CaMV can perceive aphid vectors, either directly or indirectly by sharing the host perception. This novel concept in virology, where viruses respond directly or via the host to the outside world, opens new research horizons, that is, investigating the impact of 'perceptive behaviors' on other steps of the infection cycle.DOI:http://dx.doi.org/10.7554/eLife.00183.001.


Subject(s)
Caulimovirus/pathogenicity , Insect Vectors , Virus Diseases/transmission , Animals , Aphids/virology
8.
Evolution ; 67(2): 477-86, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23356619

ABSTRACT

The transmission-virulence trade-off hypothesis is one of the few adaptive explanations of virulence evolution, and assumes that there is an overall positive correlation between parasite transmission and virulence. The shape of the transmission-virulence relationship predicts whether virulence should evolve toward either a maximum or to an intermediate optimum. A positive correlation between each of these traits and within-host growth is often suggested to underlie the relationship between virulence and transmission. There are few experimental tests of this hypothesis; this study reports on the first empirical test on a plant pathogen. We infected Brassica rapa plants with nine natural isolates of Cauliflower mosaic virus and then estimated three traits: transmission, virulence, and within-host viral accumulation. As predicted by the trade-off hypothesis, we observed a positive correlation between transmission and virulence, suggestive of the existence of an intermediate optimum. We discovered the unexpected existence of two groups of within-host accumulation, differing by at least an order of magnitude. When accumulation groups were not accounted for, within-host accumulation was correlated neither to virulence nor transmission, although our results suggest that within each group these correlations exist.


Subject(s)
Brassica rapa/virology , Caulimovirus/pathogenicity , Caulimovirus/genetics , Evolution, Molecular , Host-Pathogen Interactions/genetics , Virulence/genetics
9.
Mol Plant Pathol ; 12(9): 911-20, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21726391

ABSTRACT

Evolutionary processes responsible for parasite adaptation to their hosts determine our capacity to manage sustainably resistant plant crops. Most plant-parasite interactions studied so far correspond to gene-for-gene models in which the nature of the alleles present at a plant resistance locus and at a pathogen pathogenicity locus determine entirely the outcome of their confrontation. The interaction between the pepper pvr2 resistance locus and Potato virus Y (PVY) genome-linked protein VPg locus obeys this kind of model. Using synthetic chimeras between two parental PVY cDNA clones, we showed that the viral genetic background surrounding the VPg pathogenicity locus had a strong impact on the resistance breakdown capacity of the virus. Indeed, recombination of the cylindrical inclusion (CI) coding region between two PVY cDNA clones multiplied by six the virus capacity to break down the pvr2(3) -mediated resistance. High-throughput sequencing allowed the exploration of the diversity of PVY populations in response to the selection pressure of the pvr2(3) resistance. The CI chimera, which possessed an increased resistance breakdown capacity, did not show an increased mutation accumulation rate. Instead, selection of the most frequent resistance-breaking mutation seemed to be more efficient for the CI chimera than for the parental virus clone. These results echoed previous observations, which showed that the plant genetic background in which the pvr2(3) resistance gene was introduced modified strongly the efficiency of selection of resistance-breaking mutations by PVY. In a broader context, the PVY CI coding region is one of the first identified genetic factors to determine the evolvability of a plant virus.


Subject(s)
Capsicum/metabolism , Capsicum/virology , Plant Proteins/metabolism , Potyvirus/metabolism , Potyvirus/pathogenicity , Viral Proteins/metabolism , Capsicum/genetics , DNA, Complementary , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Potyvirus/genetics , Protein Binding , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...