Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 4(8): e00761, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30186983

ABSTRACT

Bacteria associated with corn roots inoculated with soils collected from the Canadian woodlands were isolated and characterized. Genus-level identification based on 16S rRNA sequence analysis classified the 161 isolates in 19 genera. The majority (64%) of the isolates were affiliated with the genus Pseudomonas. Further analysis of the Pseudomonas isolates based on BLASTn and rpoD-rpoB-gyrB concatenated gene phylogeny revealed three unique clusters that could not be assigned to known species. This study reports the taxonomic description of one of the distinct lineages represented by two strains (S1E40T and S1E44) with P. lurida LMG 21995T, P. costantinii LMG 22119T, P. palleroniana LMG 23076T, P. simiae CCUG 50988T and P. extremorientalis LMG 19695T as the closest taxa. Both strains showed low ANIm (<90%) and genome-based DNA-DNA hybridization (<50%) values, which unequivocally delineated the new strains from the closest relatives. These findings were supported by multilocus sequence analysis (MLSA) and DNA fingerprinting. In addition, growth characteristics and biochemical tests revealed patterns that differed from the related species. Strains S1E40T and S1E44 are Gram-negative, aerobic, rod-shaped and motile by at least one flagellum; and grew optimally at 30 °C. The predominant polar lipid is phosphatidylethanolamine while the major respiratory quinone is ubiquinone-9. Based on phenotypic and genotypic data presented here, strains S1E40T and S1E44 represent a novel species for which the name Pseudomonas aylmerense sp. nov. is proposed. The type strain is S1E40T (= LMG 30784T = DOAB 703T = HAMI 3696T) with a G + C content of 61.6%.

2.
Microbiologyopen ; 7(2): e00553, 2018 04.
Article in English | MEDLINE | ID: mdl-29464939

ABSTRACT

Multilocus sequence analysis (MLSA) of two new biological control strains (S1E40 and S3E12) of Pseudomonas was performed to assess their taxonomic position relative to close lineages, and comparative genomics employed to investigate whether these strains differ in key genetic features involved in hypersensitivity responses (HRs). Strain S3E12, at high concentration, incites HRs on tobacco and corn plantlets while S1E40 does not. Phylogenies based on individual genes and 16S rRNA-gyrB-rpoB-rpoD concatenated sequence data show strains S1E40 and S3E12 clustering in distinct groups. Strain S3E12 consistently clustered with Pseudomonas marginalis, a bacterium causing soft rots on plant tissues. MLSA data suggest that strains S1E40 and S3E12 are novel genotypes. This is consistent with the data of genome-based DNA-DNA homology values that are below the proposed cutoff species boundary. Comparative genomics analysis of the two strains revealed major differences in the type III secretion systems (T3SS) as well as the predicted T3SS secreted effector proteins (T3Es). One nonflagellar (NF-T3SS) and two flagellar T3SSs (F-T3SS) clusters were identified in both strains. While F-T3SS clusters in both strains were relatively conserved, the NF-T3SS clusters differed in the number of core components present. The predicted T3Es also differed in the type and number of CDSs with both strains having unique predicted protease-related effectors. In addition, the T1SS organization of the S3E12 genome has protein-coding sequences (CDSs) encoding for key factors such as T1SS secreted agglutinin repeats-toxins (a group of cytolysins and cytotoxins), a membrane fusion protein (LapC), a T1SS ATPase of LssB family (LapB), and T1SS-associated transglutaminase-like cysteine proteinase (LapP). In contrast, strain S1E40 has all CDSs for the seven-gene operon (pelA-pelG) required for Pel biosynthesis but not S3E12, suggesting that biofilm formation in these strains is modulated differently. The data presented here provide an insight of the genome organization of these two phytobacterial strains.


Subject(s)
Genome, Bacterial/genetics , Nicotiana/microbiology , Pseudomonas/classification , Pseudomonas/genetics , Type III Secretion Systems/genetics , Biofilms/growth & development , DNA Gyrase/genetics , DNA, Bacterial/genetics , DNA-Directed RNA Polymerases/genetics , Flagella/genetics , Multilocus Sequence Typing , Phylogeny , Plant Diseases/microbiology , RNA, Ribosomal, 16S/genetics , Seedlings/microbiology , Sequence Analysis, DNA , Sigma Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...