Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 27(42): 4341-4354, 2021.
Article in English | MEDLINE | ID: mdl-34493192

ABSTRACT

BACKGROUND: Outer membrane vesicles (OMVs) release from Gram-negative bacteria and are interesting alternatives that can replace those vaccines that contain naturally incorporated bacterial surface antigens, lipopolysaccharides (LPS) and outer membrane proteins (OMPs). Nanoparticles can be used to encapsulate vesicles for slow release and prevent macromolecular degradation. OBJECTIVE: Therefore, encapsulation of OMVs of B. pertussis into sodium alginate nanoparticles was the main aim of the current study. METHODS: The OMVs of B. pertussis extracted and characterized by particle sizer, electron microscopy, SDSPAGE and Western blot assays. The extracted OMVs were encapsulated in sodium alginate nanoparticles (OMV-NP) using unique gelation process and injected into BALB/c mice. Immunogenicity indices such as different classes of antibodies and interleukins related to different T cell lines were evaluated in immunized mice by ELISA. The respiratory challenge was evaluated in the groups of mice. The existence of pertussis toxin (PTX), filamentous haemagglutinin (FHA) and PRN (pertactin) in B. pertussis OMVs was verified using SDSPAGE and Western blot analysis. RESULTS: TEM electron microscopy showed the size of these OMVs to be around 20-80 nm. The OMVs with appropriate quality were encapsulated into sodium alginate nanoparticles (OMV-NP), and the final size was about 500 nm after encapsulation. Immunity indices were significantly higher in the OMV-NP receiving group. In challenge tests, the OMV-NP vaccine was able to show the highest rate of lung clearance compared to the control groups (OMV and wPV) at the lowest injection dose. CONCLUSION: The results indicate the potential of OMV-NP as a novel vaccine delivery system.


Subject(s)
Bordetella pertussis , Nanoparticles , Alginates , Animals , Humans , Mice , Mice, Inbred BALB C , Pertussis Vaccine
2.
Curr Pharm Biotechnol ; 18(7): 585-593, 2017.
Article in English | MEDLINE | ID: mdl-28814229

ABSTRACT

Effectiveness of the whole-cell pertussis vaccine is apparent, but improvement in the quality of the vaccine is necessary to achieve strong immunogenicity with a low bacterial number content. METHOD: Inactivated Bordetella pertussis (B. pertussis) cells entrapped microspheres were prepared via an emulsification method and analyzed for morphology, size, size distribution, loading efficiency, loading capacity, release kinetic, in vivo cytokines and antigen specific antibody subclasses. RESULTS: Bordetella pertussis encapsulated microspheres exhibited a smooth surface and spherical shape, mean particle size 151.1 µm, size distribution index 0.43, loading efficiency 89.6%, loading capacity 36.3% and release kinetic similar to the Korsmeyer-Peppas model. Splenocytes of animals immunized with new microsphere-based whole-cell vaccine produced greater quantities of IFN-γ and higher amounts of IL-4 and IL-5 cytokines compared to conventional adjuvant-adsorbed vaccines. Conventional adjuvant-adsorbed vaccines produced smaller quantities of IL-4 and IL-5. Bordetella pertussis entrapped microspheres induced both cell-mediated and humoral antibody in mice, evidenced by high levels of IgG2a and IgG1. IgG2a levels in mice were enhanced using the common aluminum phosphate-adsorbed B. pertussis whole-cell vaccine, and IgG1 levels did not increase significantly. Bordetella pertussis entrapped microspheres and common B. pertussis whole-cell vaccine samples enhanced total IgG levels in mice; however, B. pertussis-entrapped microspheres produced significantly higher levels of total IgG than other test samples. CONCLUSION: Encapsulation of inactive B. pertussis cells in microspheres appears to be a suitable approach for improving the wP vaccine quality, in particular by decreasing its toxicity to obtain good cell-mediated and humoral immunogenicity with a low bacterial number content.


Subject(s)
Alginates/chemistry , Bordetella pertussis/immunology , Drug Carriers/chemistry , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Pertussis Vaccine/immunology , Animals , Antibodies, Bacterial/blood , Cytokines/immunology , Drug Compounding , Female , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Male , Mice , Mice, Inbred Strains , Microspheres , Particle Size , Spleen/cytology , Spleen/immunology , Surface Properties , Vaccination , Vaccines, Inactivated
SELECTION OF CITATIONS
SEARCH DETAIL
...