Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Neurosci ; 14: 87, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23937191

ABSTRACT

BACKGROUND: SV2A, SV2B and SV2C are synaptic vesicle proteins that are structurally related to members of the major facilitator superfamily (MFS). The function and transported substrate of the SV2 proteins is not clearly defined although they are linked to neurotransmitters release in a presynaptic calcium concentration-dependent manner. SV2A and SV2B exhibit broad expression in the central nervous system while SV2C appears to be more restricted in defined areas such as striatum. SV2A knockout mice start to display generalized seizures at a late developmental stage, around post-natal day 7 (P7), and die around P15. More recently, SV2A was demonstrated to be the molecular target of levetiracetam, an approved anti-epileptic drug (AED). The purpose of this work was to precisely analyze and quantify the SV2A, SV2B and SV2C expression during brain development to understand the contribution of these proteins in brain development and their impact on epileptic seizures. RESULTS: First, we systematically analyzed by immunohistofluorescence, the SV2A, SV2B and SV2C expression during mouse brain development, from embryonic day 12 (E12) to P30. This semi-quantitative approach suggests a modulation of SV2A and SV2B expression in hippocampus around P7. This is the reason why we used various quantitative approaches (laser microdissection of whole hippocampus followed by qRT-PCR and western blot analysis) indicating that SV2A and SV2B expression increased between P5 and P7 and remained stable between P7 and P10. Moreover, the increase of SV2A expression in the hippocampus at P7 was mainly observed in the CA1 region while SV2B expression in this region remains stable. CONCLUSIONS: The observed alterations of SV2A expression in hippocampus are consistent with the appearance of seizures in SV2A-/- animals at early postnatal age and the hypothesis that SV2A absence favors epileptic seizures around P7.


Subject(s)
Brain/embryology , Brain/growth & development , Brain/metabolism , Membrane Glycoproteins/biosynthesis , Nerve Tissue Proteins/biosynthesis , Seizures/metabolism , Animals , Blotting, Western , Fluorescent Antibody Technique , Membrane Glycoproteins/analysis , Mice , Mice, Inbred BALB C , Mice, Knockout , Microdissection , Nerve Tissue Proteins/analysis , Protein Isoforms/analysis , Protein Isoforms/biosynthesis
2.
J Neurosci Res ; 90(12): 2317-27, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22847229

ABSTRACT

Synaptic vesicle protein 2 (SV2) is a glycoprotein that exists in three isoforms, SV2A, SV2B, and SV2C. SV2A knockout (KO) mice and SV2A/SV2B double KO (DKO) mice, but not SV2B KO animals, start to experience severe seizures and weight loss 7 days after birth and die at about postnatal day (P)14-P23. Because excitatory and inhibitory inputs play a major role in controlling neuronal excitability in the hippocampus, we examined the effects of SV2A and/or SV2B deletions on glutamatergic and GABA(A) neurotransmission in hippocampal CA1 pyramidal neurons. Spontaneous and miniature excitatory and inhibitory postsynaptic currents (sEPSCs, mEPSCs, sIPSCs, and mIPSCs, respectively) were recorded using the whole-cell patch-clamp technique in slices from P6-P14 mice. The frequency of sEPSCs was increased in SV2A KO and SV2A/SV2B DKO mice, but their amplitude was unchanged. Such changes were not observed in SV2B KOs. On the contrary, the frequency and amplitude of sIPSCs were decreased in SV2A KO and SV2A/SV2B DKO mice but not in SV2B KO animals, as reported previously for the CA3 region. Kinetic parameters of sIPSCs and sEPSCs were unchanged. Importantly, no changes were observed in any genotype when examining mEPSCs and mIPSCs. We conclude that action potential- and Ca(2+) -dependent glutamatergic and GABAergic synaptic transmission are differentially altered in the hippocampus of SV2A-deficient mice, whereas the mechanism of exocytosis itself is not changed. The altered balance between these major excitatory and inhibitory inputs is probably a contributing factor to seizures in SV2A KO and SV2A/SV2B DKO mice.


Subject(s)
CA1 Region, Hippocampal/cytology , Excitatory Postsynaptic Potentials/physiology , Inhibitory Postsynaptic Potentials/physiology , Membrane Glycoproteins/deficiency , Nerve Tissue Proteins/deficiency , Pyramidal Cells/physiology , Action Potentials , Animals , Calcium Signaling , Genes, Lethal , Glutamic Acid/physiology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/physiology , Mice , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Patch-Clamp Techniques , Protein Isoforms/physiology , Synaptic Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...