Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(50): 31197-31207, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35496839

ABSTRACT

Extraction of La(iii), Eu(iii) and Fe(iii) was compared in n-dodecane and two ionic liquids (ILs) (1-ethyl-1-butylpiperidinium bis (trifluoromethylsulfonyl)imide [EBPip+] [NTf2 -] and 1-ethyl-1-octylpiperidinium bis (trifluoromethylsulfonyl)imide [EOPip+] [NTf2 -]). Using the extractant N,N'-dimethyl-N,N'-dioctylhexylethoxymalonamide (DMDOHEMA), the effect of pH was investigated in detail to recover extraction mechanisms. The use of ILs as the organic solvent instead of n-dodecane, greatly enhances extraction efficiency, and an ionic liquid with a shorter alkyl chain [EBPip+] [NTf2 -] provides higher extraction than [EOPip+] [NTf2 -]. The mechanistic study points out that for low nitric acid concentrations ([HNO3] ≤ 0.01 M), metal is extracted via a cation of the ionic liquids, while for higher nitric acid concentrations ([HNO3] ≥ 1.0 M), extraction occurs through pure solvation mechanism of DMDOHEMA as in conventional diluents. This latter case is of high interest for applications, as higher extraction can be obtained without any loss of ILs by ion exchange mechanisms.

2.
Langmuir ; 33(46): 13168-13179, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29059520

ABSTRACT

In the second part of this study, we analyze the free energy of transfer in the case of synergistic solvent extraction. This free energy of the transfer of an ion in dynamic equilibrium between two coexisting phases is decomposed into four driving forces combining long-range interactions with the classical complexation free energy associated with the nearest neighbors. We demonstrate how the organometallic complexation is counterbalanced by the cost in free energy related to structural change on the colloidal scale in the solvent phase. These molecular forces of synergistic extraction are driven not only by the entropic term associated with the tight packing of electrolytes in the solvent and by the free energy cost of coextracting water toward the hydrophilic core of the reverse aggregates present but also by the entropic costs in the formation of the reverse aggregate and by the interfacial bending energy of the extractant molecules packed around the extracted species. Considering the sum of the terms, we can rationalize the synergy observed, which cannot be explained by classical extraction modeling. We show an industrial synergistic mixture combining an amide and a phosphate complexing site, where the most efficient/selective mixture is observed for a minimal bending energy and maximal complexation energy.

3.
Langmuir ; 32(49): 13095-13105, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27951687

ABSTRACT

Revisiting aggregation of extractant molecules into water-poor mixed reverse micelles, we propose in this paper to identify the thermodynamic origins of synergy in solvent extraction. Considering that synergistic extraction properties of a mixture of extractants is related to synergistic aggregation of this mixture, we identify here the elements at the origin of synergy by independently investigating the effect of water, acid, and extracted cations. Thermodynamic equations are proposed to describe synergistic aggregation in the peculiar case of synergistic solvent extraction by evaluating critical aggregation concentration (CAC) as well as specific interactions between extractants due to the presence of water, acid and cations. Distribution of two extractant molecules in the free extractants and in reverse micelles was assessed, leading to an estimation of the in-plane interaction parameter between extractants in the aggregates as introduced by Bergström and Eriksson ( Bergström, M.; Eriksson, J. C. A Theoretical Analysis of Synergistic Effects in Mixed Surfactant Systems . Langmuir 2000 , 16 , 7173 - 7181 ). Based on this model, we study the N,N'-dimethyl-N,N'-dioctylhexylethoxymalonamide (DMDOHEMA) and di(2-ethylexyl) phosphoric acid (HDEHP) mixture and show that adding nitric acid enhances synergistic aggregation at the equimolar ratio of the two extractants and that this configuration can be related to a favored enthalpy of mixing.

4.
J Phys Chem B ; 120(10): 2814-23, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26900882

ABSTRACT

Among the proposed mechanisms to predict and understand synergism in solvent extraction, the possibility of a preorganization of the mixture of extractant molecules has never been considered. Whether involving synergistic aggregation as for solubilization enhancement with reverse micelles or favored molecular interaction between the extractant molecules, evaluation of this hypothesis requires characterization of the aggregates formed by the extractant molecules at different scales. We investigate here the HDEHP/TOPO couple of extractant with methods ranging from vibrational spectroscopy and ESI-MS spectrometry to vapor pressure osmometry and neutron and X-ray scattering to cover both molecular and supramolecular scales. These experimental methods are subjected to DFT calculations and molecular dynamics calculations, allowing a rationalization of the results through the different scales. Performed in the absence of any cation, this original study allows a decorrelation of the mechanisms at the origin of synergy: it appears that no clear preorganization of the extractants can explain the synergy and therefore that the synergistic aggregation observed in the presence of cations is rather due to the chelation mechanisms than to intrinsic properties of the extractant molecules.

5.
Dalton Trans ; 45(3): 1259-68, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26673884

ABSTRACT

The extraction of rare earth elements (REEs) from nitric acid solution with a triphosphine trioxide (TPO) is presented. Performances of such a ligand in ionic liquids vs. a classical solvent (benzyl ether) are compared. TPO seems to be 10 to 100 times more efficient when it is dissolved in ionic media whatever the concentration of nitric acid involved. Mechanistic investigations reveal that cation exchange classically observed in ionic liquids is not consistent with the experimental data. Moreover, clear differences in the TPO/Ln complexes between classical and ionic media are highlighted. A stable complex of 1 lanthanide for 3 TPO is formed in an ionic liquid whereas a complex of 1 lanthanide for 6 to 9 TPO is formed in benzyl ether. Back extraction is also studied and good recovery of REEs could be obtained. The TPO/ionic liquid system shows remarkable performances i.e. efficiency and selectivity towards lanthanides in a simulated leaching solution of a Nd/Fe/B/Dy magnet.

6.
Chem Commun (Camb) ; 51(88): 15960-3, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26378416

ABSTRACT

Ionic liquids have many favorable properties over conventional diluents in solvent extraction. They provide an environmentally benign feature, adjustable polarity and, in some cases, higher extraction performances that remain however not predictable. As it may have a major role in extraction mechanisms, we evidence the supramolecular aggregation of HDEHP/TOPO extractant molecules in the [OMim][NTf2] ionic liquid.

7.
Langmuir ; 31(25): 7006-15, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26053416

ABSTRACT

Iron-uranium selectivity in liquid-liquid extraction depends not only on the mole fraction of extractants, but also on the nature of the diluent used, even if the diluent has no complexation interaction with the extracted ions. Modeling strong nonlinearity is difficult to parametrize without a large number of parameters, interpreted as "apparent constants". We determine in this paper the synergy curve versus mole fraction of HDEHP-TOPO (di(2-ethylexyl) phosphoric acid/tri-n-octyl phosphine oxide) and compare the free energy of aggregation to the free energy of extraction in various diluents. There is always a concomitant maximum of the two quantities, but with a gradual influence on intensity. The diluent is wetting the chains of the reverse aggregates responsible of the extraction. We show here that the intensity of the unexplained synergy peak is strongly dependent on the "penetrating" or "nonpenetrating" nature of the diluent. This experimental determination allows us to attribute the synergy to a combination of entropic effects favoring extraction, opposed to perturbation of the first coordination sphere by penetration as well as surfactant film bending energy.


Subject(s)
Entropy , Liquid-Liquid Extraction/methods , Iron/isolation & purification , Phosphines/chemistry , Phosphoric Acids/chemistry , Uranium/isolation & purification
8.
Langmuir ; 28(31): 11319-28, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22765353

ABSTRACT

In liquid-liquid extraction, synergism emerges when for a defined formulation of the solvent phase, there is an increase of distribution coefficients for some cations in a mixture. To characterize the synergistic mechanisms, we determine the free energy of mixed coassembly in aggregates. Aggregation in any point of a phase diagram can be followed not only structurally by SANS, SAXS, and SLS, but also thermodynamically by determining the concentration of monomers coexisting with reverse aggregates. Using the industrially used couple HDEHP/TOPO forming mixed reverse aggregates, and the representative couple U/Fe, we show that there is no peculiarity in the aggregates microstructure at the maximum of synergism. Nevertheless, the free energy of aggregation necessary to form mixed aggregates containing extracted ions in their polar core is comparable to the transfer free energy difference between target and nontarget ions, as deduced from the synergistic selectivity peak.

9.
J Phys Chem B ; 113(14): 4619-30, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19256482

ABSTRACT

Quinuclidine grafted cationic bile salts are forming salted hydrogels. An extensive investigation of the effect of the electrolyte and counterions on the gelation has been envisaged. The special interest of the quinuclidine grafted bile salt is due to its broader experimental range of gelation to study the effect of electrolyte. Rheological features of the hydrogels are typical of enthalpic networks exhibiting a scaling law of the elastic shear modulus with the concentration (scaling exponent 2.2) modeling cellular solids in which the bending modulus is the dominant parameter. The addition of monovalent salt (NaCl) favors the formation of gels in a first range (0.00117 g cm(-3) (0.02 M) < T(NaCl) < 0.04675 g cm(-3) (0.8 M)). At larger salt concentrations, the gels become more heterogeneous with nodal zones in the micron scale. Small-angle neutron scattering experiments have been used to characterize the rigid fibers ( approximately 68 A) and the nodal zones. Stress sweep and creep-recovery measurements are used to relate the lack of linear viscoelastic domain to a mechanism of disentanglement of the fibers from their associations into fagots. The electrostatic interactions can be screened by addition of salt to induce a progressive evolution toward flocculation. SEM, UV absorbance, and SAXS study of the Bragg peak at large Q-values complete the investigation.


Subject(s)
Bile Acids and Salts/chemistry , Hydrogels/chemistry , Quinuclidines/chemistry , Cations/chemistry , Electrolytes/chemistry , Micelles , Molecular Structure , Osmolar Concentration , Rheology , Sodium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...