Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Biochem Mol Biol ; 65: 91-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26363294

ABSTRACT

Cyenopyrafen is a Mitochondrial Electron Transport Inhibitor (METI) acaricide with a novel mode of action at complex II, which has been recently developed for the control of the spider mite Tetranychus urticae, a pest of eminent importance globally. However, some populations of T. urticae are cross-resistant to this molecule, and cyenopyrafen resistance can be readily selected in the lab. The cytochrome P450s genes CYP392A11 and CYP392A12 have been strongly associated with the phenotype. We expressed the CYP392A11 and the CYP392A12 genes with T. urticae cytochrome P450 reductase (CPR) in Escherichia coli. CYP392A12 was expressed predominately as an inactive form, witnessed by a peak at P420, despite optimization efforts on expression conditions. However, expression of CYP392A11 produced a functional enzyme, with high activity and preference for the substrates Luciferin-ME EGE and ethoxycoumarin. CYP392A11 catalyses the conversion of cyenopyrafen to a hydroxylated analogue (kcat = 2.37 pmol/min/pmol P450), as well as the hydroxylation of fenpyroximate (kcat = 1.85 pmol/min/pmol P450). In addition, transgenic expression of CYP392A11 in Drosophila melanogaster, in conjunction with TuCPR, confers significant levels of fenpyroximate resistance. The overexpression of CYP392A11 in multi-resistant T. urticae strains, not previously exposed to cyenopyrafen, which had been indicated by microarray studies, was confirmed by qPCR, and it was correlated with significant levels of cyenopyrafen and fenpyroximate cross-resistance. The implications of our findings for insecticide resistance management strategies are discussed.


Subject(s)
Acaricides/metabolism , Acrylonitrile/analogs & derivatives , Arthropod Proteins/metabolism , Benzoates/metabolism , Cytochrome P-450 Enzyme System/metabolism , Inactivation, Metabolic , Pyrazoles/metabolism , Tetranychidae/drug effects , Acaricides/pharmacology , Acrylonitrile/metabolism , Acrylonitrile/pharmacology , Animals , Arthropod Proteins/genetics , Benzoates/pharmacology , Cytochrome P-450 Enzyme System/genetics , Drosophila melanogaster/drug effects , Insecticide Resistance , Pyrazoles/pharmacology , Tetranychidae/enzymology , Tetranychidae/genetics
2.
Insect Mol Biol ; 15(6): 797-811, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17201772

ABSTRACT

In this report we present results from a comprehensive study undertaken toward the identification of proteins interacting with odourant-binding proteins (OBPs) of the African malaria vector Anopheles gambiae with a focus on the interactions among different OBPs. From an initial screen for proteins that interact with a member of the Plus-C group of OBPs, OBP48, which is primarily expressed in female antennae and downregulated after a blood meal, a number of interacting proteins were identified, which included five classic OBPs and OBP48 itself. The interacting OBPs as well as a number of other classic and Plus-C group OBPs that were not identified in the initial screen, were expressed in lepidopteran cells and subsequently examined for in vitro interactions in the absence of exogenously added ligands. Co-immunoprecipitation and chemical cross-linking studies suggest that OBP48 is capable of homodimerizing, heterodimerizing and forming higher order complexes with those examined examples of classical OBPs identified in the initial screen but not with other classical or Plus-C group OBPs that failed to appear in the screen. The latter OBPs are, however, also capable of forming homodimers in vitro and, at least in the case of two examined classic OBPs, heterodimers as well. These results suggest a previously unsuspected potential of nonrandom combinatorial complexity that may be crucial for odour discrimination by the mosquito.


Subject(s)
Anopheles/metabolism , Insect Vectors/metabolism , Malaria/pathology , Receptors, Odorant/metabolism , Africa , Animals , Chromatography, Affinity , Cross-Linking Reagents , Female , Immunoprecipitation , Insect Proteins/isolation & purification , Protein Binding , Protein Interaction Mapping , Receptors, Odorant/isolation & purification , Two-Hybrid System Techniques
3.
J Virol ; 79(15): 9765-76, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16014938

ABSTRACT

Cotesia congregata is a parasitoid wasp that injects its eggs in the host caterpillar Manduca sexta. In this host-parasite interaction, successful parasitism is ensured by a third partner: a bracovirus. The relationship between parasitic wasps and bracoviruses constitutes one of the few known mutualisms between viruses and eukaryotes. The C. congregata bracovirus (CcBV) is injected at the same time as the wasp eggs in the host hemolymph. Expression of viral genes alters the caterpillar's immune defense responses and developmental program, resulting in the creation of a favorable environment for the survival and emergence of adult parasitoid wasps. Here, we describe the characterization of a CcBV multigene family which is highly expressed during parasitism and which encodes three proteins with homology to members of the cystatin superfamily. Cystatins are tightly binding, reversible inhibitors of cysteine proteases. Other cysteine protease inhibitors have been described for lepidopteran viruses; however, this is the first description of the presence of cystatins in a viral genome. The expression and purification of a recombinant form of one of the CcBV cystatins, cystatin 1, revealed that this viral cystatin is functional having potent inhibitory activity towards the cysteine proteases papain, human cathepsins L and B and Sarcophaga cathepsin B in assays in vitro. CcBV cystatins are, therefore, likely to play a role in host caterpillar physiological deregulation by inhibiting host target proteases in the course of the host-parasite interaction.


Subject(s)
Cystatins/metabolism , Manduca/parasitology , Polydnaviridae/metabolism , Wasps/metabolism , Wasps/physiology , Amino Acid Sequence , Animals , Base Sequence , Cathepsins/antagonists & inhibitors , Cystatins/genetics , Cystatins/isolation & purification , Cystatins/pharmacology , Diptera/enzymology , Genes, Viral , Host-Parasite Interactions , Humans , Molecular Sequence Data , Multigene Family/physiology , Ovum/virology , Papain/antagonists & inhibitors , Sequence Alignment , Wasps/virology
5.
J Mol Evol ; 38(4): 369-82, 1994 Apr.
Article in English | MEDLINE | ID: mdl-8007005

ABSTRACT

The mitochondrial DNA (mtDNA) size of the terrestrial gastropod Albinaria turrita was determined by restriction enzyme mapping and found to be approximately 14.5 kb. Its partial gene content and organization were examined by sequencing three cloned segments representing about one-fourth of the mtDNA molecule. Complete sequences of cytochrome c oxidase subunit II (COII), and ATPase subunit 8 (ATPase8), as well as partial sequences of cytochrome c oxidase subunit I (COI), NADH dehydrogenase subunit 6 (ND6), and the large ribosomal RNA (lrRNA) genes were determined. Nine putative tRNA genes were also identified by their ability to conform to typical mitochondrial tRNA secondary structures. An 82-nt sequence resembles a noncoding region of the bivalve Mytilus edulis, even though it might contain a tenth tRNA gene with an unusual 5-nt overlap with another tRNA gene. The genetic code of Albinaria turrita appears to be the same as that of Drosophila and Mytilus edulis. The structures of COI and COII are conservative, but those of ATPase8 and ND6 are diversified. The sequenced portion of the lrRNA gene (1,079 nt) is characterized by conspicuous deletions in the 5' and 3' ends; this gene represents the smallest coelomate lrRNA gene so far known. Sequence comparisons of the identified genes indicate that there is greater difference between Albinaria and Mytilus than between Albinaria and Drosophila. An evolutionary analysis, based on COII sequences, suggests a possible nonmonophyletic origin of molluskan mtDNA. This is supported also by the absence of the ATPase8 gene in the mtDNA of Mytilus and nematodes, while this gene is present in the mtDNA of Albinaria and Cepaea nemoralis and in all other known coelomate metazoan mtDNAs.


Subject(s)
DNA, Mitochondrial/genetics , Snails/genetics , Amino Acid Sequence , Animals , Base Composition , Base Sequence , Biological Evolution , Genetic Code , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...