Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 90(7): 073105, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31370460

ABSTRACT

We report on a laboratory-based facility for in-house x-ray absorption fine structure (XAFS) measurements. The device consists of a conventional x-ray source for the production of the incident polychromatic radiation and a von Hamos bent crystal spectrometer for the analysis of the incoming and transmitted radiation. The reliability of the laboratory-based setup was evaluated by comparing the Cu K-edge and Ta L3-edge XAFS spectra obtained in-house with the corresponding spectra measured at a synchrotron radiation facility. To check the accuracy of the device, the K- and L-edge energies and the attenuation coefficients below and above the edges of several 3d, 4d, and 5d elements were determined and compared with the existing experimental and theoretical data. The dependence of the XAFS spectrum shape on the oxidation state of the sample was also probed by measuring inhouse the absorption spectra of metallic Fe and two Fe oxides (Fe2O3 and Fe3O4).

2.
Rev Sci Instrum ; 90(6): 063106, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31255015

ABSTRACT

The design and performance of a high-resolution transmission-type X-ray spectrometer for use in the 15-26 keV energy range at synchrotron light sources is reported. Monte Carlo X-ray-tracing simulations were performed to optimize the performance of the transmission-type spectrometer, based on the DuMond geometry, for use at the Super X-ray absorption beamline of the Swiss Light Source at the Paul Scherrer Institute. This spectrometer provides an instrumental energy resolution of 3.5 eV for X-ray emission lines around 16 keV and 12.5 eV for emission lines at 26 keV, which is comparable to the natural linewidths of the K and L X-ray transitions in the covered energy range. First experimental data are presented and compared with results of the Monte Carlo X-ray simulations.

3.
Phys Chem Chem Phys ; 19(43): 29271-29277, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29067360

ABSTRACT

The potential of valence to core Al X-ray emission spectroscopy to determine aluminum distribution in ferrierite zeolites was investigated. The recorded emission spectra of four samples prepared with different structure directing agents exhibit slight variations in the position of the main emission peak and the intensity of its low energy shoulder. Theoretical calculations indicate that an increased intensity of the Kßx shoulder in the Al emission spectra can be linked to a predominant occupation of the T3 site by a single aluminum atom. This study thus suggests that valence to core X-ray emission spectroscopy can be applied to help determine the occupation of aluminum at crystallographic T-sites in zeolites.

4.
J Phys Condens Matter ; 28(1): 015301, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26648394

ABSTRACT

We report on vacuum ultraviolet (VUV) excited photoluminescence (PL) spectra emitted from a chemical vapor deposited MoS2 few-layered film. The excitation spectrum was recorded by monitoring intensities of PL spectra at ~1.9 eV. A strong wide excitation band peaking at 7 eV was found in the excitation. The PL excitation band is most intensive at liquid helium temperature and completely quenched at 100 K. Through first-principles calculations of photoabsorption in MoS2, the excitation was explicated and attributed to transitions of electrons from p- and d- type states in the valence band to the d- and p-type states in the conduction band. The obtained photon-in/photon-out results clarify the excitation and emission behavior of the low dimensional MoS2 when interacting with the VUV light sources.

5.
Phys Rev Lett ; 112(17): 173003, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24836243

ABSTRACT

X-ray emission spectra recorded in the off-resonant regime carry information on the density of unoccupied states. It is known that by employing the Kramers-Heisenberg formalism, the high energy resolution off-resonant spectroscopy (HEROS) is equivalent to the x-ray absorption spectroscopy (XAS) technique and provides the same electronic state information. Moreover, in the present Letter we demonstrate that the shape of HEROS spectra is not modified by self-absorption effects. Therefore, in contrast to the fluorescence-based XAS techniques, the recorded shape of the spectra is independent of the sample concentration or thickness. The HEROS may thus be used as an experimental technique when precise information about specific absorption features and their strengths is crucial for chemical speciation or theoretical evaluation.

6.
Rev Sci Instrum ; 85(4): 043101, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24784587

ABSTRACT

The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-ray tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO2 optical fibers.


Subject(s)
Spectrometry, X-Ray Emission/instrumentation , Spectrometry, X-Ray Emission/methods , X-Rays
7.
Struct Dyn ; 1(2): 021101, 2014 Mar.
Article in English | MEDLINE | ID: mdl-26798772

ABSTRACT

Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10(-18) s) to femtoseconds (10(-15) s) and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS), we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

8.
Rev Sci Instrum ; 84(9): 093104, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089813

ABSTRACT

We report on a high-resolution transmission-type curved crystal spectrometer based on the modified DuMond slit geometry. The spectrometer was developed at the University of Fribourg for the study of photoinduced X-ray spectra. K and L X-ray transitions with energies above about 10 keV can be measured with an instrumental resolution comparable to their natural linewidths. Construction details and operational characteristics of the spectrometer are presented. The variation of the energy resolution as a function of the focal distance and diffraction order is discussed. The high sensitivity of the spectrometer is demonstrated via the 2s-1s dipole-forbidden X-ray transition of Gd which could be observed despite its extremely low intensity. The precision of the instrument is illustrated by comparing the sum of the energies of the Au K-L2 and L2-M3 cascading transitions with the energy of the crossover K-M3 transition as well as by considering the energy differences of the Gd Kα1 X-ray line measured at five different diffraction orders. Finally, to demonstrate the versatility of the spectrometer, it is shown that the latter can also be used for in-house extended X-ray absorption fine structure measurements.

9.
Rev Sci Instrum ; 83(10): 103105, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126749

ABSTRACT

We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

10.
Phys Rev Lett ; 107(7): 073001, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21902389

ABSTRACT

We propose a novel approach for the theoretical analysis of the photoinduced high-resolution K(h)α(1,2) x-ray hypersatellite spectra, which allows us to obtain reliable values of lifetimes of the doubly K-shell ionized states and fundamental information about the relative role of K-shell double photoionization (DPI) mechanisms. It is demonstrated for the first time that the K(h)α(1,2) hypersatellite natural line broadening observed for selected metal atoms with 20 ≤ Z ≤ 30 can be well reproduced quantitatively by taking into account the influences of the open-shell valence configuration (adopted from predictions of the band-structure method) and the outer-shell ionization and excitation following the DPI process.

11.
Phys Rev Lett ; 107(5): 053001, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21867065

ABSTRACT

Experimental evidence for the correlated two-electron one-photon transitions (1s(-2)→2s(-1)2p(-1)) following single-photon K-shell double ionization is reported. The double K-shell vacancy states in solid Mg, Al, and Si were produced by means of monochromatized synchrotron radiation, and the two-electron one-photon radiative transitions were observed by using a wavelength dispersive spectrometer. The two-electron one-photon transition energies and the branching ratios of the radiative one-electron to two-electron transitions were determined and compared to available perturbation theory predictions and configuration interaction calculations.

12.
J Synchrotron Radiat ; 17(3): 400-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20400840

ABSTRACT

The development of a wavelength-dispersive spectrometer for microfluorescence analysis at the X-ray Microscopy ID21 beamline of the European Synchrotron Radiation Facility (ESRF) is reported. The spectrometer is based on a polycapillary optic for X-ray fluorescence collection and is operated in a flat-crystal geometry. The design considerations as well as operation characteristics of the spectrometer are presented. The achieved performances, in particular the energy resolution, are compared with the results of Monte Carlo simulations. Further improvement in the energy resolution, down to approximately eV range, by employing a double-crystal geometry is examined. Finally, examples of applications requiring both spatial and spectral resolutions are presented.

13.
Phys Rev Lett ; 102(7): 073006, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19257666

ABSTRACT

We report on the photon energy dependence of the K-shell double photoionization (DPI) of Mg, Al, and Si. The DPI cross sections were derived from high-resolution measurements of x-ray spectra following the radiative decay of the K-shell double vacancy states. Our data evince the relative importance of the final-state electron-electron interaction to the DPI. By comparing the double-to-single K-shell photoionization cross-section ratios for neutral atoms with convergent close-coupling calculations for He-like ions, the effect of outer shell electrons on the K-shell DPI process is assessed. Universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms is revealed.

14.
Rev Sci Instrum ; 79(8): 083101, 2008 Aug.
Article in English | MEDLINE | ID: mdl-19044330

ABSTRACT

Using 98% linearly polarized radiation at the European Synchrotron Radiation Facility in Grenoble, the performance of a prototype two-dimensional microstrip Ge(i) detector for x-ray imaging and as a Compton polarimeter has been evaluated. Using the energy and position sensitivity of the detector, the ability to obtain a complete reconstruction of the Compton event has been demonstrated. The modulation coefficient of the polarimeter is in good agreement with the theoretical limit of a perfect detector.

15.
Rev Sci Instrum ; 78(9): 093102, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17902942

ABSTRACT

High-resolution x-ray measurements were performed with a von Hamos-type bent crystal spectrometer using for the detection of the diffracted photons either a back-illuminated charge-coupled device (CCD) camera or a front-illuminated one. For each CCD the main x-ray emission lines (e.g., Kalpha, Kbeta, Lalpha, and Lbeta) of a variety of elements were measured in order to probe the performances of the two detectors between 1 and 18 keV. From the observed x-ray lines the linearity of the energy response, the noise level, the energy resolution, and the quantum efficiency ratio of the two CCDs were determined.

16.
Phys Rev Lett ; 97(7): 073001, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-17026224

ABSTRACT

We report on the first high-resolution measurements of the K x-ray resonant Raman scattering (RRS) in Si. The measured x-ray RRS spectra, interpreted using the Kramers-Heisenberg approach, revealed spectral features corresponding to electronic excitations to the conduction and valence bands in silicon. The total cross sections for the x-ray RRS at the 1s absorption edge and the 1s-3p excitation were derived. The Kramers-Heisenberg formalism was found to reproduce quite well the x-ray RRS spectra, which is of prime importance for applications of the total-reflection x-ray fluorescence technique.

17.
Phys Rev A ; 54(5): 3852-3858, 1996 Nov.
Article in English | MEDLINE | ID: mdl-9913931
19.
Phys Rev A ; 53(2): 717-725, 1996 Feb.
Article in English | MEDLINE | ID: mdl-9912943
SELECTION OF CITATIONS
SEARCH DETAIL
...