Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396822

ABSTRACT

Despite recent progress, the application of CRISPR/Cas9 in perennial plants still has many obstacles to overcome. Our previous results with CRISPR/Cas9 in apple and pear indicated the frequent production of phenotypic and genotypic chimeras, after editing of the phytoene desaturase (PDS) gene conferring albino phenotype. Therefore, our first objective was to determine if adding an adventitious regeneration step from leaves of the primary transgenic plants (T0) would allow a reduction in chimerism. Among hundreds of adventitious buds regenerated from a variegated T0 line, 89% were homogeneous albino. Furthermore, the analysis of the target zone sequences of twelve of these regenerated lines (RT0 for "regenerated T0" lines) indicated that 99% of the RT0 alleles were predicted to produce a truncated target protein and that 67% of RT0 plants had less heterogeneous editing profiles than the T0. Base editors are CRISPR/Cas9-derived new genome-editing tools that allow precise nucleotide substitutions without double-stranded breaks. Hence, our second goal was to demonstrate the feasibility of CRISPR/Cas9 base editing in apple and pear using two easily scorable genes: acetolactate synthase-ALS (conferring resistance to chlorsulfuron) and PDS. The two guide RNAs under MdU3 and MdU6 promoters were coupled into a cytidine base editor harboring a cytidine deaminase fused to a nickase Cas9. Using this vector; we induced C-to-T DNA substitutions in the target genes; leading to discrete variation in the amino-acid sequence and generating new alleles. By co-editing ALS and PDS genes; we successfully obtained chlorsulfuron resistant and albino lines in pear. Overall; our work indicates that a regeneration step can efficiently reduce the initial chimerism and could be coupled with the application of base editing to create accurate genome edits in perennial plants.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Malus/genetics , Pyrus/genetics , Chimerism , Cytidine Deaminase/genetics , Gene Targeting , Genome, Plant , Phenotype , Plants, Genetically Modified , Research Design
2.
Transgenic Res ; 28(5-6): 611-626, 2019 12.
Article in English | MEDLINE | ID: mdl-31538273

ABSTRACT

Artificial miRNA (amiRNA) is a powerful technology to silence genes of interest. It has a high efficiency and specificity that can be used to explore gene function through targeted gene regulation or to create new traits. To develop this gene regulation tool in apple, we designed two amiRNA constructs based on an apple endogenous miRNA backbone previously characterized (Md-miR156h), and we checked their efficiency on an easily scorable marker gene: the phytoene desaturase gene (MdPDS in apple). Two pairs of miRNA:miRNA* regions were designed (named h and w). The monocistronic Md-miR156h with these MdPDS targets was placed under the control of the CaMV 35S promoter to generate the two plasmids: pAmiRNA156h-PDSh and pAmiRNA156h-PDSw. Two Agrobacterium-mediated transformation experiments were performed on the cultivar 'Gala'. A total of 11 independent transgenic clones were obtained in the first experiment and 5 in the second. Most transgenic lines had a typical albino and dwarf phenotype. However, six clones had a wild type green phenotype. Molecular analyses indicated clear relationships between the degree of albino phenotype, the level of MdPDS gene expression and the amount of mature amiRNAs. This study demonstrated for the first time in apple the functionality of an artificial miRNA based on an endogenous miRNA backbone. It provides important opportunities for apple genetic functional studies as well as apple genetic improvement projects.


Subject(s)
Malus/genetics , MicroRNAs/genetics , Plants, Genetically Modified/genetics , Transformation, Genetic , Agrobacterium/genetics , Gene Expression Regulation, Plant/genetics , Gene Silencing , Genetic Vectors/genetics , Malus/growth & development , Plants, Genetically Modified/growth & development
3.
Front Plant Sci ; 10: 40, 2019.
Article in English | MEDLINE | ID: mdl-30787936

ABSTRACT

Targeted genome engineering has emerged as an alternative to classical plant breeding and transgenic methods to improve crop plants. Among other methods (zinc finger nucleases or TAL effector nucleases) the CRISPR-Cas system proved to be the most effective, convenient and least expensive method. In this study, we optimized the conditions of application of this system on apple and explored its feasibility on pear. As a proof of concept, we chose to knock-out the Phytoene Desaturase (PDS) and Terminal Flower 1 (TFL1) genes. To improve the edition efficiency, two different single guide RNAs (gRNAs) were associated to the Cas9 nuclease for each target gene. These gRNAs were placed under the control of the U3 and U6 apple promoters. Characteristic albino phenotype was obtained for 85% of the apple transgenic lines targeted in MdPDS gene. Early flowering was observed in 93% of the apple transgenic lines targeted in MdTFL1.1 gene and 9% of the pear transgenic lines targeted in PcTFL1.1. Sequencing of the target zones in apple and pear CRISPR-PDS and CRISPR-TFL1.1 transgenic lines showed that the two gRNAs induced mutations but at variable frequencies. In most cases, Cas9 nuclease cut the DNA in the twenty targeted base pairs near the protospacer adjacent motif and insertions were more frequent than deletions or substitutions. The most frequent edition profile of PDS as well as TFL1.1 genes was chimeric biallelic. Analysis of a sample of potential off-target sequences of the CRISPR-TFL1.1 construct indicated the absence of edition in cases of three mismatches. In addition, transient transformation with the CRISPR-PDS construct produced two T-DNA free edited apple lines. Our overall results indicate that, despite the frequent occurrence of chimerism, the CRISPR-Cas 9 system is a powerful and precise method to induce targeted mutagenesis in the first generation of apple and pear transgenic lines.

SELECTION OF CITATIONS
SEARCH DETAIL
...