Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 16427, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30401880

ABSTRACT

Trichoderma spp colonizes the plant rhizosphere and provides pathogen resistance, abiotic stress tolerance, and enhance growth and development. We evaluated the Arabidopsis-Trichoderma interaction using a split system in which Trichoderma atroviride and Trichoderma virens were grown on PDA or MS medium. Arabidopsis growth was significantly increased at 3 and 5 days post-inoculation with both Trichoderma species, when the fungal strains were grown on PDA in split interaction. The analysis of DR5:uidA reporter line revealed a greater auxin accumulation in root tips when the fungi were grown on PDA in a split interaction. The root hair-defective phenotype of Arabidopsis rhd6 mutant was reverted with both Trichoderma species, even in split interactions. At 12 °C, Trichoderma species in split interactions were able to mitigate the effects of cold stress on the plant, and also Trichoderma induced the AtERD14 expression, a cold related gene. Volatile organic compounds analysis revealed that Trichoderma strains produce mainly sesquiterpenes, and that the type and abundance of these compounds was dependent on the fungal strain and the culture medium. Our results show that fungal nutrition is an important factor in plant growth in a split interaction.


Subject(s)
Arabidopsis/growth & development , Culture Media/pharmacology , Host-Pathogen Interactions , Plant Roots/growth & development , Seedlings/growth & development , Trichoderma/physiology , Volatile Organic Compounds/pharmacology , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/microbiology , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/microbiology , Seedlings/drug effects , Seedlings/metabolism , Seedlings/microbiology , Volatile Organic Compounds/analysis
2.
Environ Monit Assess ; 178(1-4): 333-47, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20839047

ABSTRACT

Firewood is the basic fuel source in rural Bolivia. A study was conducted in an Andean village of subsistence farmers to investigate human impact on wild firewood species. A total of 114 different fuel species was inventoried during fieldtrips and transect sampling. Specific data on abundance and growth height of wild firewood species were collected in thirty-six transects of 50 ×2 m(2). Information on fuel uses of plants was obtained from 13 local Quechua key participants. To appraise the impact of fuel harvest, the extraction impact value (EIV) index was developed. This index takes into account local participants' appreciation of (1) decreasing plant abundance; (2) regeneration capacity of plants; (3) impact of root harvesting; and (4) quality of firewood. Results suggest that several (sub-)woody plant species are negatively affected by firewood harvesting. We found that anthropogenic pressure, expressed as EIV, covaried with density of firewood species, which could entail higher human pressure on more abundant and/or more accessible species. The apparent negative impact of anthropogenic pressure on populations of wild fuel species is corroborated by our finding that, in addition to altitude, several anthropogenic variables (i.e. site accessibility, cultivation of exotics and burning practices) explain part of the variation in height of firewood species in the surroundings of Apillapampa.


Subject(s)
Biodiversity , Plant Development , Rural Population/statistics & numerical data , Wood/analysis , Bolivia , Conservation of Natural Resources , Energy-Generating Resources/statistics & numerical data , Environment , Environmental Monitoring , Fires , Humans , Plants/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...