Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791544

ABSTRACT

Antimicrobial peptides (AMPs) are promising candidates for new antibiotics due to their broad-spectrum activity against pathogens and reduced susceptibility to resistance development. Deep-learning techniques, such as deep generative models, offer a promising avenue to expedite the discovery and optimization of AMPs. A remarkable example is the Feedback Generative Adversarial Network (FBGAN), a deep generative model that incorporates a classifier during its training phase. Our study aims to explore the impact of enhanced classifiers on the generative capabilities of FBGAN. To this end, we introduce two alternative classifiers for the FBGAN framework, both surpassing the accuracy of the original classifier. The first classifier utilizes the k-mers technique, while the second applies transfer learning from the large protein language model Evolutionary Scale Modeling 2 (ESM2). Integrating these classifiers into FBGAN not only yields notable performance enhancements compared to the original FBGAN but also enables the proposed generative models to achieve comparable or even superior performance to established methods such as AMPGAN and HydrAMP. This achievement underscores the effectiveness of leveraging advanced classifiers within the FBGAN framework, enhancing its computational robustness for AMP de novo design and making it comparable to existing literature.


Subject(s)
Antimicrobial Peptides , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Drug Design/methods , Neural Networks, Computer , Deep Learning , Algorithms
2.
Bioinformatics ; 37(13): 1796-1804, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34048559

ABSTRACT

MOTIVATION: Protein structural class prediction is one of the most significant problems in bioinformatics, as it has a prominent role in understanding the function and evolution of proteins. Designing a computationally efficient but at the same time accurate prediction method remains a pressing issue, especially for sequences that we cannot obtain a sufficient amount of homologous information from existing protein sequence databases. Several studies demonstrate the potential of utilizing chaos game representation along with time series analysis tools such as recurrence quantification analysis, complex networks, horizontal visibility graphs (HVG) and others. However, the majority of existing works involve a large amount of features and they require an exhaustive, time consuming search of the optimal parameters. To address the aforementioned problems, this work adopts the generalized multidimensional recurrence quantification analysis (GmdRQA) as an efficient tool that enables to process concurrently a multidimensional time series and reduce the number of features. In addition, two data-driven algorithms, namely average mutual information and false nearest neighbors, are utilized to define in a fast yet precise manner the optimal GmdRQA parameters. RESULTS: The classification accuracy is improved by the combination of GmdRQA with the HVG. Experimental evaluation on a real benchmark dataset demonstrates that our methods achieve similar performance with the state-of-the-art but with a smaller computational cost. AVAILABILITY AND IMPLEMENTATION: The code to reproduce all the results is available at https://github.com/aretiz/protein_structure_classification/tree/main. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
IEEE Trans Image Process ; 30: 4305-4315, 2021.
Article in English | MEDLINE | ID: mdl-33835917

ABSTRACT

This paper introduces a novel coding/decoding mechanism that mimics one of the most important properties of the human visual system: its ability to enhance the visual perception quality in time. In other words, the brain takes advantage of time to process and clarify the details of the visual scene. This characteristic is yet to be considered by the state-of-the-art quantization mechanisms that process the visual information regardless the duration of time it appears in the visual scene. We propose a compression architecture built of neuroscience models; it first uses the leaky integrate-and-fire (LIF) model to transform the visual stimulus into a spike train and then it combines two different kinds of spike interpretation mechanisms (SIM), the time-SIM and the rate-SIM for the encoding of the spike train. The time-SIM allows a high quality interpretation of the neural code and the rate-SIM allows a simple decoding mechanism by counting the spikes. For that reason, the proposed mechanisms is called Dual-SIM quantizer (Dual-SIMQ). We show that (i) the time-dependency of Dual-SIMQ automatically controls the reconstruction accuracy of the visual stimulus, (ii) the numerical comparison of Dual-SIMQ to the state-of-the-art shows that the performance of the proposed algorithm is similar to the uniform quantization schema while it approximates the optimal behavior of the non-uniform quantization schema and (iii) from the perceptual point of view the reconstruction quality using the Dual-SIMQ is higher than the state-of-the-art.


Subject(s)
Data Compression/methods , Image Processing, Computer-Assisted/methods , Models, Neurological , Action Potentials/physiology , Algorithms , Humans , Neurons/physiology , Visual Perception/physiology
4.
IEEE Trans Image Process ; 27(7): 3484-3499, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29671748

ABSTRACT

This paper introduces a novel filter, which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer, and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model "virtual retina." This model is the cornerstone to derive the non-separable spatio-temporal OPL retina-inspired filter, briefly renamed retina-inspired filter, studied in this paper. This filter is connected to the dynamic behavior of the retina, which enables the retina to increase the sharpness of the visual stimulus during filtering before its transmission to the brain. We establish that this retina-inspired transform forms a group of spatio-temporal Weighted Difference of Gaussian (WDoG) filters when it is applied to a still image visible for a given time. We analyze the spatial frequency bandwidth of the retina-inspired filter with respect to time. It is shown that the WDoG spectrum varies from a lowpass filter to a bandpass filter. Therefore, while time increases, the retina-inspired filter enables to extract different kinds of information from the input image. Finally, we discuss the benefits of using the retina-inspired filter in image processing applications such as edge detection and compression.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Models, Neurological , Retina/physiology , Humans , Normal Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...