Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10003, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693192

ABSTRACT

Zika, a viral disease transmitted to humans by Aedes mosquitoes, emerged in the Americas in 2015, causing large-scale epidemics. Colombia alone reported over 72,000 Zika cases between 2015 and 2016. Using national surveillance data from 1121 municipalities over 70 weeks, we identified sociodemographic and environmental factors associated with Zika's emergence, re-emergence, persistence, and transmission intensity in Colombia. We fitted a zero-state Markov-switching model under the Bayesian framework, assuming Zika switched between periods of presence and absence according to spatially and temporally varying probabilities of emergence/re-emergence (from absence to presence) and persistence (from presence to presence). These probabilities were assumed to follow a series of mixed multiple logistic regressions. When Zika was present, assuming that the cases follow a negative binomial distribution, we estimated the transmission intensity rate. Our results indicate that Zika emerged/re-emerged sooner and that transmission was intensified in municipalities that were more densely populated, at lower altitudes and/or with less vegetation cover. Warmer temperatures and less weekly-accumulated rain were also associated with Zika emergence. Zika cases persisted for longer in more densely populated areas with more cases reported in the previous week. Overall, population density, elevation, and temperature were identified as the main contributors to the first Zika epidemic in Colombia. We also estimated the probability of Zika presence by municipality and week, and the results suggest that the disease circulated undetected by the surveillance system on many occasions. Our results offer insights into priority areas for public health interventions against emerging and re-emerging Aedes-borne diseases.


Subject(s)
Aedes , Markov Chains , Zika Virus Infection , Zika Virus , Zika Virus Infection/transmission , Zika Virus Infection/epidemiology , Colombia/epidemiology , Humans , Animals , Aedes/virology , Bayes Theorem , Mosquito Vectors/virology , Disease Outbreaks
2.
Can J Stat ; 50(3): 713-733, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35941958

ABSTRACT

Forecasting the number of daily COVID-19 cases is critical in the short-term planning of hospital and other public resources. One potentially important piece of information for forecasting COVID-19 cases is mobile device location data that measure the amount of time an individual spends at home. Endemic-epidemic (EE) time series models are recently proposed autoregressive models where the current mean case count is modelled as a weighted average of past case counts multiplied by an autoregressive rate, plus an endemic component. We extend EE models to include a distributed-lag model in order to investigate the association between mobility and the number of reported COVID-19 cases; we additionally include a weekly first-order random walk to capture additional temporal variation. Further, we introduce a shifted negative binomial weighting scheme for the past counts that is more flexible than previously proposed weighting schemes. We perform inference under a Bayesian framework to incorporate parameter uncertainty into model forecasts. We illustrate our methods using data from four US counties.


La prévision du nombre de cas quotidiens de COVID­19 est cruciale pour la planification à court terme de ressources hospitalières et d'autres ressources publiques. Les données de localisation des téléphones mobiles qui mesurent le temps passé à la maison peuvent constituer un élément d'information important pour prédire les cas de COVID­19. Les modèles de séries chronologiques endémiques­épidémiques sont des modèles auto­régressifs récents où le nombre moyen de cas en cours est modélisé comme une moyenne pondérée du nombre de cas antérieurs multipliée par un taux auto­régressif (reproductif), plus une composante endémique. Les auteurs de ce travail généralisent les modèles endémiques­épidémiques pour y inclure un modèle à décalage distribué, et ce, dans le but de tenir compte du lien entre la mobilité et le nombre de cas de COVID­19 enregistrés. Pour saisir les variations de temps supplémentaires, ils y incorporent une marche hebdomadaire aléatoire d'ordre supérieur. De plus, ils proposent un schéma de pondération binomiale négative décalée pour les dénombrements passés, qui est plus flexible que les schémas de pondération existants. Ils utilisent l'inférence bayésienne afin d'intégrer l'incertitude des paramètres aux prédictions du modèle et ils illustrent les méthodes proposées avec des données provenant de quatre comtés américains.

3.
Int J Infect Dis ; 102: 254-259, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33115683

ABSTRACT

OBJECTIVE: The North American coronavirus disease-2019 (COVID-19) epidemic exhibited distinct early trajectories. In Canada, Quebec had the highest COVID-19 burden and its earlier March school break, taking place two weeks before those in other provinces, could have shaped early transmission dynamics. METHODS: We combined a semi-mechanistic model of SARS-CoV-2 transmission with detailed surveillance data from Quebec and Ontario (initially accounting for 85% of Canadian cases) to explore the impact of case importation and timing of control measures on cumulative hospitalizations. RESULTS: A total of 1544 and 1150 cases among returning travelers were laboratory-confirmed in Quebec and Ontario, respectively (symptoms onset ≤03-25-2020). Hospitalizations could have been reduced by 55% (95% CrI: 51%-59%) if no cases had been imported after Quebec's March break. However, if Quebec had experienced Ontario's number of introductions, hospitalizations would have only been reduced by 12% (95% CrI: 8%-16%). Early public health measures mitigated the epidemic spread as a one-week delay could have resulted in twice as many hospitalizations (95% CrI: 1.7-2.1). CONCLUSION: Beyond introductions, factors such as public health preparedness, responses and capacity could play a role in explaining interprovincial differences. In a context where regions are considering lifting travel restrictions, coordinated strategies and proactive measures are to be considered.


Subject(s)
COVID-19/transmission , SARS-CoV-2 , Travel , Adult , Aged , COVID-19/epidemiology , Canada/epidemiology , Humans , Middle Aged , Models, Theoretical , Public Health
4.
Nature ; 570(7760): 189-193, 2019 06.
Article in English | MEDLINE | ID: mdl-31092927

ABSTRACT

HIV/AIDS is a leading cause of disease burden in sub-Saharan Africa. Existing evidence has demonstrated that there is substantial local variation in the prevalence of HIV; however, subnational variation has not been investigated at a high spatial resolution across the continent. Here we explore within-country variation at a 5 × 5-km resolution in sub-Saharan Africa by estimating the prevalence of HIV among adults (aged 15-49 years) and the corresponding number of people living with HIV from 2000 to 2017. Our analysis reveals substantial within-country variation in the prevalence of HIV throughout sub-Saharan Africa and local differences in both the direction and rate of change in HIV prevalence between 2000 and 2017, highlighting the degree to which important local differences are masked when examining trends at the country level. These fine-scale estimates of HIV prevalence across space and time provide an important tool for precisely targeting the interventions that are necessary to bringing HIV infections under control in sub-Saharan Africa.


Subject(s)
Geographic Mapping , HIV Infections/epidemiology , Adolescent , Adult , Africa South of the Sahara/epidemiology , Female , HIV Infections/prevention & control , Humans , Male , Middle Aged , Prevalence , Public Health/statistics & numerical data , Public Health/trends , Young Adult
5.
Lancet ; 392(10159): 2052-2090, 2018 11 10.
Article in English | MEDLINE | ID: mdl-30340847

ABSTRACT

BACKGROUND: Understanding potential trajectories in health and drivers of health is crucial to guiding long-term investments and policy implementation. Past work on forecasting has provided an incomplete landscape of future health scenarios, highlighting a need for a more robust modelling platform from which policy options and potential health trajectories can be assessed. This study provides a novel approach to modelling life expectancy, all-cause mortality and cause of death forecasts -and alternative future scenarios-for 250 causes of death from 2016 to 2040 in 195 countries and territories. METHODS: We modelled 250 causes and cause groups organised by the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) hierarchical cause structure, using GBD 2016 estimates from 1990-2016, to generate predictions for 2017-40. Our modelling framework used data from the GBD 2016 study to systematically account for the relationships between risk factors and health outcomes for 79 independent drivers of health. We developed a three-component model of cause-specific mortality: a component due to changes in risk factors and select interventions; the underlying mortality rate for each cause that is a function of income per capita, educational attainment, and total fertility rate under 25 years and time; and an autoregressive integrated moving average model for unexplained changes correlated with time. We assessed the performance by fitting models with data from 1990-2006 and using these to forecast for 2007-16. Our final model used for generating forecasts and alternative scenarios was fitted to data from 1990-2016. We used this model for 195 countries and territories to generate a reference scenario or forecast through 2040 for each measure by location. Additionally, we generated better health and worse health scenarios based on the 85th and 15th percentiles, respectively, of annualised rates of change across location-years for all the GBD risk factors, income per person, educational attainment, select intervention coverage, and total fertility rate under 25 years in the past. We used the model to generate all-cause age-sex specific mortality, life expectancy, and years of life lost (YLLs) for 250 causes. Scenarios for fertility were also generated and used in a cohort component model to generate population scenarios. For each reference forecast, better health, and worse health scenarios, we generated estimates of mortality and YLLs attributable to each risk factor in the future. FINDINGS: Globally, most independent drivers of health were forecast to improve by 2040, but 36 were forecast to worsen. As shown by the better health scenarios, greater progress might be possible, yet for some drivers such as high body-mass index (BMI), their toll will rise in the absence of intervention. We forecasted global life expectancy to increase by 4·4 years (95% UI 2·2 to 6·4) for men and 4·4 years (2·1 to 6·4) for women by 2040, but based on better and worse health scenarios, trajectories could range from a gain of 7·8 years (5·9 to 9·8) to a non-significant loss of 0·4 years (-2·8 to 2·2) for men, and an increase of 7·2 years (5·3 to 9·1) to essentially no change (0·1 years [-2·7 to 2·5]) for women. In 2040, Japan, Singapore, Spain, and Switzerland had a forecasted life expectancy exceeding 85 years for both sexes, and 59 countries including China were projected to surpass a life expectancy of 80 years by 2040. At the same time, Central African Republic, Lesotho, Somalia, and Zimbabwe had projected life expectancies below 65 years in 2040, indicating global disparities in survival are likely to persist if current trends hold. Forecasted YLLs showed a rising toll from several non-communicable diseases (NCDs), partly driven by population growth and ageing. Differences between the reference forecast and alternative scenarios were most striking for HIV/AIDS, for which a potential increase of 120·2% (95% UI 67·2-190·3) in YLLs (nearly 118 million) was projected globally from 2016-40 under the worse health scenario. Compared with 2016, NCDs were forecast to account for a greater proportion of YLLs in all GBD regions by 2040 (67·3% of YLLs [95% UI 61·9-72·3] globally); nonetheless, in many lower-income countries, communicable, maternal, neonatal, and nutritional (CMNN) diseases still accounted for a large share of YLLs in 2040 (eg, 53·5% of YLLs [95% UI 48·3-58·5] in Sub-Saharan Africa). There were large gaps for many health risks between the reference forecast and better health scenario for attributable YLLs. In most countries, metabolic risks amenable to health care (eg, high blood pressure and high plasma fasting glucose) and risks best targeted by population-level or intersectoral interventions (eg, tobacco, high BMI, and ambient particulate matter pollution) had some of the largest differences between reference and better health scenarios. The main exception was sub-Saharan Africa, where many risks associated with poverty and lower levels of development (eg, unsafe water and sanitation, household air pollution, and child malnutrition) were projected to still account for substantive disparities between reference and better health scenarios in 2040. INTERPRETATION: With the present study, we provide a robust, flexible forecasting platform from which reference forecasts and alternative health scenarios can be explored in relation to a wide range of independent drivers of health. Our reference forecast points to overall improvements through 2040 in most countries, yet the range found across better and worse health scenarios renders a precarious vision of the future-a world with accelerating progress from technical innovation but with the potential for worsening health outcomes in the absence of deliberate policy action. For some causes of YLLs, large differences between the reference forecast and alternative scenarios reflect the opportunity to accelerate gains if countries move their trajectories toward better health scenarios-or alarming challenges if countries fall behind their reference forecasts. Generally, decision makers should plan for the likely continued shift toward NCDs and target resources toward the modifiable risks that drive substantial premature mortality. If such modifiable risks are prioritised today, there is opportunity to reduce avoidable mortality in the future. However, CMNN causes and related risks will remain the predominant health priority among lower-income countries. Based on our 2040 worse health scenario, there is a real risk of HIV mortality rebounding if countries lose momentum against the HIV epidemic, jeopardising decades of progress against the disease. Continued technical innovation and increased health spending, including development assistance for health targeted to the world's poorest people, are likely to remain vital components to charting a future where all populations can live full, healthy lives. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Child Nutrition Disorders/epidemiology , Global Burden of Disease/economics , Global Health/standards , HIV Infections/epidemiology , Nutrition Disorders/epidemiology , Wounds and Injuries/epidemiology , Birth Rate/trends , Cause of Death , Child , Child Nutrition Disorders/mortality , Communicable Diseases/epidemiology , Communicable Diseases/mortality , Decision Making/ethics , Female , Forecasting , Global Health/trends , Guideline Adherence/standards , HIV Infections/mortality , Humans , Life Expectancy/trends , Male , Mortality, Premature/trends , Nutrition Disorders/mortality , Poverty/statistics & numerical data , Poverty/trends , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...