Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38801859

ABSTRACT

The superior canal dehiscence syndrome is a pathology that affects the arcuate eminence creating a "third window" between the inner ear and the middle fossa. This condition can lead to symptoms such as hearing loss, autophony, or sound-induced vertigo. Traditionally, surgical treatment has been performed by microscope-assisted temporal craniotomy, but when the dehiscence is in the medial part of the arcuate eminence the bone defect may not be seen. We present case series treated at our institution diagnosed of superior canal dehiscence syndrome involving the medial slope of the arcuate eminence. During surgery, the bone defect could not be visible with traditional microscopic techniques. Nonetheless, by introducing the endoscope with the 0º and 30º optics, the dehiscence could be clearly observed and treated correctly. Our results show a clinical improvement without side effects or complications in the patients undergoing this technique. Endoscope-assisted surgery is a safe procedure and provides a better visualization of medial defects.

2.
EBioMedicine ; 90: 104484, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36907105

ABSTRACT

BACKGROUND: Glioblastoma is one of the most devastating and incurable cancers due to its aggressive behaviour and lack of available therapies, being its overall-survival from diagnosis ∼14-months. Thus, identification of new therapeutic tools is urgently needed. Interestingly, metabolism-related drugs (e.g., metformin/statins) are emerging as efficient antitumour agents for several cancers. Herein, we evaluated the in vitro/in vivo effects of metformin and/or statins on key clinical/functional/molecular/signalling parameters in glioblastoma patients/cells. METHODS: An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin. FINDINGS: Metformin and simvastatin exerted strong antitumour actions in glioblastoma cell cultures (i.e., proliferation/migration/tumoursphere/colony-formation/VEGF-secretion inhibition and apoptosis/senescence induction). Notably, their combination additively altered these functional parameters vs. individual treatments. These actions were mediated by the modulation of key oncogenic signalling-pathways (i.e., AKT/JAK-STAT/NF-κB/TGFß-pathways). Interestingly, an enrichment analysis uncovered a TGFß-pathway activation, together with AKT inactivation, in response to metformin + simvastatin combination, which might be linked to an induction of the senescence-state, the associated secretory-phenotype, and to the dysregulation of spliceosome components. Remarkably, the antitumour actions of metformin + simvastatin combination were also observed in vivo [i.e., association with longer overall-survival in human, and reduction in tumour-progression in a mouse model (reduced tumour-size/weight/mitosis-number, and increased apoptosis)]. INTERPRETATION: Altogether, metformin and simvastatin reduce aggressiveness features in glioblastomas, being this effect significantly more effective (in vitro/in vivo) when both drugs are combined, offering a clinically relevant opportunity that should be tested for their use in humans. FUNDING: Spanish Ministry of Science, Innovation and Universities; Junta de Andalucía; CIBERobn (CIBER is an initiative of Instituto de Salud Carlos III, Spanish Ministry of Health, Social Services and Equality).


Subject(s)
Glioblastoma , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Metformin , Humans , Mice , Animals , Metformin/pharmacology , Metformin/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/pathology , Proto-Oncogene Proteins c-akt , Simvastatin/pharmacology , Simvastatin/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Retrospective Studies , Transforming Growth Factor beta/pharmacology , Cell Line, Tumor , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...