Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Microbiol ; 135(1-2): 54-67, 2009 Mar 16.
Article in English | MEDLINE | ID: mdl-18977610

ABSTRACT

Feral pigeons (Columba livia domestica), which thrive in most European towns and cities, are commonly infected with the zoonotic bacterium Chlamydophila psittaci, the agent of psittacosis (also known as ornithosis) in humans. A number of surveys carried out over the last thirty years across Europe have detected high seropositivity values and high percentages of infection in feral pigeon populations. Overall, when considering data from 11 European countries, seropositivity values to C. psittaci in the sampled populations ranged from 19.4% to 95.6%. In most surveys, the complement fixation test was used, and antibodies were detected in 19.4-66.3% of the samples, with a median of 46.1%. Indirect immunofluorescence and ELISA tests were employed less frequently, but led to the detection of higher percentages of seropositivity (23.7-67.7% and 35.9-95.6%, respectively). Attempts to grow C. psittaci in cell culture or embryonated chicken eggs were successful in 2-42.3% and 0-57.1% of samples, respectively, antigen detection methods were positive in 2.3-40% of samples, while conventional PCR and real-time PCR using different genomic targets detected the organism in 3.4-50% of samples. Twenty-five C. psittaci isolates from pigeons were typed as ompA genotype B (n=14), E (n=10) and E/B (n=1). The huge increase of feral pigeon populations in Europe is a major cause of concern for the detrimental effect of pigeon droppings on environmental hygiene, in addition to the extensive damage due to the fouling of buildings and monuments. The most important pathogenic organism transmissible from feral pigeons to humans is C. psittaci, with 101 cases of disease reported in the literature. Exposure to C. psittaci-contaminated dust, direct contact with pigeons through handling and, to a lesser extent, through pigeon feeding have been identified as hazardous exposures in more than half of the human cases, while loose or transient contacts with feral pigeons have been mentioned in about 40% of the cases. Education initiatives as to the communication of a health risk resulting from contact with pigeons and pigeon excreta should primarily be targeted at individuals who may be exposed to C. psittaci-contaminated dust, such as demolition/construction workers. Recommendations to this category of workers include wearing protective clothes with hoods, boots, gloves and air filter face masks when removing pigeon faeces from roofs, garrets and buildings, especially if working indoors. Monitoring for C. psittaci infections in these workers over time should also be considered. Children should be warned not to handle sick or dead pigeons, and immunocompromised individuals should be advised to carefully limit their contact to feral pigeons. Culling of pigeons by shooting or poisoning is both unethical and ineffective as the place of the killed birds in the population is quickly filled by new juveniles or immigrating birds from neighbouring areas. Pigeon-deterring systems, such as nets and plastic or metal spikes applied to buildings and monuments will prevent their fouling, and the administration of contraceptive drugs may allow size regulation of the pigeon populations. Nevertheless, the measure that will ultimately lead to permanent reduction and will establish healthy sustainable populations is the restriction of indiscriminate feeding by pigeon lovers. The erection of dovecotes and artificial breeding facilities should be considered for providing shelter and a balanced diet to the birds, as well as a chance of interaction for pigeon lovers in a hygienically controlled environment.


Subject(s)
Bird Diseases/microbiology , Chlamydia Infections/veterinary , Columbidae , Public Health , Animals , Animals, Wild , Bird Diseases/epidemiology , Chlamydia Infections/epidemiology , Europe/epidemiology
2.
Vet Res Commun ; 29 Suppl 1: 23-36, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15943063

ABSTRACT

Immune reactivity for Chlamydophila (C.) psittaci in Slovenia was monitored in parrots, canaries, finches and nine species of recently captured free-living birds (house sparrows, Eurasian goldfinches, tree sparrows, chaffinches, European greenfinches, European serines, Eurasian siskins, Eurasian linnets and Eurasian bullfinches) in the period from 1991 to 2001. In subsequent years, specific IgG antibodies were found using immunofluorescence in parrots (0.7-53.6%), canaries (0.0-3.5%), finches (0.0-5.7%) and in captured free-living birds (33.3% of Eurasian goldfinches in 1994). An experimental infection with C psittaci was performed in order to study clinical signs and pathological changes in canaries and finches. The C. psittaci strain used for experimental infection was isolated from a cockatiel (Nymphicus hollandicus). Chlamydial DNA was extracted from clinical material followed by RFLP-PCR analysis. Infection of canaries and finches was confirmed in organ smears by direct immunofluorescence and a modified Gimenez staining method. In addition, serological tests of indirect immunofluorescence and complement fixation were applied. However, in spite of positive immunological reaction there were no clinical signs three weeks after infection. The present study includes results of a serological survey of persons belonging to the most important risk groups (breeders, pet shopkeepers and veterinarians). The results of microimmunofluorescence to identify the presence of specific antibodies and correlation between appearance of infection in birds and important risk groups are presented. Out of 143 persons belonging to the high-risk group we found 10 (7%) persons who were immunologically positive. Testing of two successive samples was used to demonstrate an increase in IgG and IgA titres in human sera. However, IgM, which is indicative of acute infection, could not be detected.


Subject(s)
Bird Diseases/epidemiology , Psittacosis/veterinary , Animals , Antibodies, Bacterial/blood , Bird Diseases/microbiology , Birds , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Lung/pathology , Male , Psittacosis/epidemiology , Seroepidemiologic Studies , Slovenia/epidemiology , Spleen/pathology , Testis/pathology , Time Factors
3.
Vet Rec ; 152(8): 230-4, 2003 Feb 22.
Article in English | MEDLINE | ID: mdl-12625537

ABSTRACT

Two cases of Mycoplasma gallisepticum infection in different avian species in backyard gamebird operations in Slovenia were investigated. In the first case, M gallisepticum was associated with severe respiratory disease with almost 20 per cent mortality in pheasants, whereas the infection was less pathogenic for chickens and turkeys reared at the same site. The M gallisepticum isolates from pheasants had a unique pMGA gene sequence containing a repeat of 12 nucleotides, and they contained only small amounts of the cytadhesins MGC1 and MGC3 and no PvpA protein. However, they expressed some typical M gallisepticum proteins and several proteins which were immunogenic for pheasants, chickens and turkeys. A strain of M gallisepticum isolated from the sinus of a pheasant was highly pathogenic for chicken embryos. In the second case, the M gallisepticum strain that was associated with respiratory disease and mortality in peafowl also affected chickens. M gallisepticum strain ULB 992 was isolated from the infraorbital sinus of a dead peafowl. The ULB 992 strain synthesised a small amount of MGC3, a truncated form of MGC1 and lacked PvpA. However, it expressed several proteins which were immunogenic for the birds infected with M gallisepticum at both gamebird operations.


Subject(s)
Disease Outbreaks/veterinary , Mycoplasma Infections/veterinary , Mycoplasma/isolation & purification , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Respiratory Tract Infections/veterinary , Animals , Antibodies, Bacterial/blood , Chickens , Female , Immunoblotting , Male , Mycoplasma/genetics , Mycoplasma/immunology , Mycoplasma/pathogenicity , Mycoplasma Infections/epidemiology , Mycoplasma Infections/microbiology , Poultry , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Slovakia/epidemiology , Turkeys
SELECTION OF CITATIONS
SEARCH DETAIL
...