Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nitric Oxide ; 19(4): 326-32, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18675930

ABSTRACT

Thiolysis of the model diazeniumdiolate prodrug, O2-(2,4-dinitrophenyl) 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DNP-DEA/NO), by glutathione (GSH), cysteine (CYSH) and 1-heptanethiol (heptylmercaptan, HM) has been examined in anionic (DOPG), neutral (DPPC, DOPE) and cationic (DOTAP) vesicle media and in glycine buffered aqueous solutions. DOTAP vesicles accelerate the bimolecular reaction with glutathione, cysteine and 1-heptanethiol by factors of 81, 8.2 and 4630, respectively, while reaction is inhibited 5- to 10-fold in the presence of neutral and anionic vesicles. The intrinsic nucleophilicity of the thiols has been compared through the second-order rate constants, 22.9, 5.24 and 43.1M(-1)s(-1), for nucleophilic attack on 1 by GS(-), CYS(-) and M(-), respectively, obtained in buffered aqueous media. Analysis of the catalysis by DOTAP vesicles, using pseudophase ion-exchange formalism, suggests that the rate increase is due to reactant concentration in the bilayer and interfacial region coupled with enhanced dissociation of the thiol at the vesicle surface. Some contribution from enhanced nucleophilic reactivity at the vesicle interface may also contribute to the greater catalysis by HM. Inhibition of the thiolysis reaction by phospholipid liposomes is attributed to repulsion of the thiolate anions by the negatively charged acyl phosphate of the lipid head group. DOPG=1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], DPPC=1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DOPE=1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, DOTAP=1,2-dioleoyl-3-trimethylammonium-propane.


Subject(s)
Azo Compounds/chemistry , Prodrugs/chemistry , Sulfhydryl Compounds/chemistry , Azo Compounds/chemical synthesis , Buffers , Cysteine/chemistry , Fatty Acids, Monounsaturated/chemistry , Glutathione/metabolism , Glutathione/pharmacokinetics , Hydrogen-Ion Concentration , Liposomes/chemistry , Nitric Oxide Donors/chemical synthesis , Nitric Oxide Donors/chemistry , Quaternary Ammonium Compounds/chemistry , Spectrophotometry, Ultraviolet
2.
Nitric Oxide ; 13(3): 204-9, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16122951

ABSTRACT

The effect of phospholipid liposomes and surfactant micelles on the rate of nitric oxide release from zwitterionic diazeniumdiolates, R1R2N[N(O)NO]-, with significant hydrophobic structure, has been explored. The acid-catalyzed dissociation of NO has been examined in phosphate-buffered solutions of sodium dodecylsulfate (SDS) micelles and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-[phospho-(1-glycerol)] sodium salt (DPPG) phospholipid liposomes. The reaction behavior of dibenzylamine-, monobenzylamine-, and dibutylamine-derived substrates [1]: R1 = C6H5CH2, R2 = C6H5CH2 NH2+(CH2)2, 2: R1 = C6H5CH2, R2 = NH3+(CH2)2, and 3: R1 = n-butyl, R2 = n-butyl-NH2+(CH2)6] has been compared with that of SPER/NO, 4: R1 = H2N(CH2)3, R2 = H2N(CH2) 3NH2+(CH2)4]. Catalysis of NO release is observed in both micellar and liposome media. Hydrophobic interactions contribute to micellar binding for 1-3 and appear to be the main factor facilitating catalysis by charge neutral DPPC liposomes. Binding constants for the association of 1 and 3 with SDS micelles were 3-fold larger than those previously obtained with comparable zwitterionic substrates lacking their hydrophobic structure. Anionic DPPG liposomes were much more effective in catalyzing NO release than either DPPC liposomes or SDS micelles. DPPG liposomes (at 10 mM total lipid) induced a 30-fold increase in the NO dissociation rate of SPER/NO compared to 12- and 14-fold increases in that of 1 and 3.


Subject(s)
Azo Compounds/chemistry , Hydrophobic and Hydrophilic Interactions , Liposomes/chemistry , Nitric Oxide/biosynthesis , Surface-Active Agents/chemistry , Azo Compounds/metabolism , Catalysis , Hydrogen-Ion Concentration , Kinetics , Phospholipids/chemistry , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/pharmacology , Surface-Active Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...