Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Oncogene ; 27(32): 4503-8, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18391979

ABSTRACT

Promoter methylation of the RAS-association domain family 1, isoform A gene (RASSF1A) is one of the most frequent events found in human tumours. In this study we set out to test the hypothesis that loss of Rassf1a can cooperate with inactivation of the adenomatous polyposis coli (Apc) gene to accelerate intestinal tumourigenesis using the Apc-Min (Apc(Min/+)) mouse model, as mutational or deletional inactivation of APC is a frequent early event in the genesis of intestinal cancer. Further, loss of RASSF1A has also been reported to occur in premalignant adenomas of the bowel. RASSF1A has been implicated in an array of pivotal cellular processes, including regulation of the cell cycle, apoptosis, microtubule stability and most recently in the beta-catenin signalling pathway. By interbreeding isoform specific Rassf1a knockout mice with Apc(+/Min) mice, we showed that loss of Rassf1a results in a significant increase in adenomas of the small intestine and accelerated intestinal tumourigenesis leading to the earlier death of adenocarcinoma-bearing mice and decreased overall survival. Comparative genomic hybridization of adenomas from Rassf1a(-/-); Apc(+/Min) mice revealed no evidence of aneuploidy or gross chromosomal instability (no difference to adenomas from Rassf1a(+/+); Apc(+/Min) mice). Immunohistochemical analysis of adenomas revealed increased nuclear beta-catenin accumulation in adenomas from Rassf1a(-/-); Apc(+/Min) mice, compared to those from Rassf1a(+/+); Apc(+/Min) mice, but no differences in proliferation marker (Ki67) staining patterns. Collectively these data demonstrate cooperation between inactivation of Rassf1a and Apc resulting in accelerated intestinal tumourigenesis, with adenomas showing increased nuclear accumulation of beta-catenin, supporting a mechanistic link via loss of the known interaction of Rassf1 with beta-TrCP that usually mediates degradation of beta-catenin.


Subject(s)
Genes, APC , Intestinal Neoplasms/etiology , Tumor Suppressor Proteins/physiology , Adenoma/etiology , Adenoma/genetics , Aneuploidy , Animals , Cell Nucleus/metabolism , Chromosomal Instability , Humans , Intestinal Neoplasms/genetics , Intestinal Neoplasms/metabolism , Ki-67 Antigen/analysis , Mice , Mice, Inbred C57BL , Signal Transduction , Tumor Suppressor Proteins/genetics , beta Catenin/metabolism
3.
J Pathol ; 210(1): 49-58, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16823893

ABSTRACT

Despite the excellent survival of Wilms tumour patients treated with multimodality therapy, approximately 15% will suffer from tumour relapse, where response rates are markedly reduced. We have carried out microarray-based comparative genomic hybridisation on a series of 76 Wilms tumour samples, enriched for cases which recurred, to identify changes in DNA copy number associated with clinical outcome. Using 1Mb-spaced genome-wide BAC arrays, the most significantly different genomic changes between favourable histology tumours that did (n = 37), and did not (n = 39), subsequently relapse were gains on 1q, and novel deletions at 12q24 and 18q21. Further relapse-associated loci included losses at 1q32.1, 2q36.3-2q37.1, and gain at 13q31. 1q gains correlated strongly with loss of 1p and/or 16q. In 3 of 11 cases with concurrent 1p(-)/1q(+), a breakpoint was identified at 1p13. Multiple low-level sub-megabase gains along the length of 1q were identified using chromosome 1 tiling-path arrays. One such recurrent region at 1q22-q23.1 included candidate genes RAB25, NES, CRABP2, HDGF and NTRK1, which were screened for mRNA expression using quantitative RT-PCR. These data provide a high-resolution catalogue of genomic copy number changes in relapsing favourable histology Wilms tumours.


Subject(s)
Kidney Neoplasms/genetics , Oligonucleotide Array Sequence Analysis/methods , Wilms Tumor/genetics , Chromosome Aberrations , Chromosome Deletion , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, Pair 8/genetics , DNA, Neoplasm/genetics , Genes, Wilms Tumor/physiology , Humans , Kidney Neoplasms/pathology , Neoplasm Recurrence, Local/genetics , RNA, Messenger/analysis , RNA, Neoplasm/analysis , Treatment Outcome , Wilms Tumor/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...