Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Surg Res ; 135(2): 218-25, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16904692

ABSTRACT

BACKGROUND: In healing wounds, rising levels of vascular endothelial growth factor (VEGF) induce a period of robust angiogenesis. The levels of pro-angiogenic factors in the wound begin to decline just before a period of vascular regression, suggesting that these mediators are necessary to sustain vessel density. The purpose of this study was to determine if the maintenance of pro-angiogenic stimuli in the wound would prevent physiological vessel regression. MATERIALS AND METHODS: A standard subcutaneous sponge wound model was modified by the addition of a mini-osmotic pump, allowing manipulation of the wound milieu by the addition of exogenous growth factors. After initial characterization of this model, exogenous VEGF (10 microg/mL), FGF (10 microg/mL), PDGF (10 microg/mL), or VEGF (10 microg/mL) plus FGF (10 microg/mL) were delivered to wounds and blood vessel density analyzed by immunohistochemistry. RESULTS: VEGF administration resulted in a transient increase in wound vessel density (P < 0.05). None of the pro-angiogenic growth factors (VEGF, FGF, PDGF, VEGF/FGF) were able to prevent vascular regression (P = NS). CONCLUSIONS: These findings suggest that the anti-angiogenic signals that mediate physiological vascular regression in wounds are strongly dominant over pro-angiogenic stimuli during the later phases of wound healing. Clinical manipulation of anti-angiogenic signals in addition to the currently used pro-angiogenic targets may be needed to achieve therapeutic modulation of blood vessel density.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Blood Vessels/drug effects , Wound Healing/physiology , Analysis of Variance , Animals , Blood Vessels/growth & development , Female , Fibroblast Growth Factors/pharmacology , Immunohistochemistry , Mice , Mice, Inbred BALB C , Platelet-Derived Growth Factor/pharmacology , Vascular Endothelial Growth Factor A/pharmacology
2.
Photomed Laser Surg ; 24(2): 121-8, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16706690

ABSTRACT

This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as "photobiomodulation," uses light in the far-red to near-infrared region of the spectrum (630-1000 nm) and modulates numerous cellular functions. Positive effects of NIR-light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIRLED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metabolism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat models, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction.


Subject(s)
Infrared Rays/therapeutic use , Wound Healing/radiation effects , Animals , Chick Embryo , Humans , In Vitro Techniques , Mice , Mitochondria/metabolism , Myocardial Ischemia/radiotherapy , Oxidation-Reduction/radiation effects , Rats
3.
Am J Pathol ; 167(5): 1257-66, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16251410

ABSTRACT

Vascular endothelial growth factor (VEGF-A), a potent stimulus for angiogenesis, is up-regulated in the skin after wounding. Although studies have shown that VEGF is important for wound repair, it is unclear whether this is based solely on its ability to promote angiogenesis or if VEGF can also promote healing by acting directly on non-endothelial cell types. By immunohistochemistry and reverse transcriptase-polymerase chain reaction, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was detected in murine keratinocytes during wound repair and in normal human epidermal keratinocytes (NHEKs). The presence of VEGF receptors on NHEKs was verified by binding studies with 125I-VEGF. In vitro, VEGF stimulated the proliferation of NHEKs, an effect that could be blocked by treatment with neutralizing VEGFR-1 antibodies. A role for VEGFR-1 in keratinocytes was also shown in vivo because treatment of excisional wounds with neutralizing VEGFR-1 antibodies delayed re-epithelialization. Treatment with anti-VEGFR-1 antibodies also reduced the number of proliferating keratinocytes at the leading edge of the wound, suggesting that VEGF sends a proliferative signal to these cells. Together, these data describe a novel role for VEGFR-1 in keratinocytes and suggest that VEGF may play several roles in cutaneous wound repair.


Subject(s)
Keratinocytes/physiology , Vascular Endothelial Growth Factor Receptor-1/physiology , Wound Healing/physiology , Animals , Cell Line , Female , Gene Expression , Humans , Immunohistochemistry , Iodine Isotopes/metabolism , Keratinocytes/chemistry , Mice , Mice, Inbred BALB C , Protein Binding , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Skin/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism
4.
Thromb Haemost ; 92(2): 275-80, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15269822

ABSTRACT

Cells of the innate immune system, including neutrophils and macrophages, are a highly visible component of normal wound healing in adult mammals. The role of inflammatory cells in the healing wound has been widely investigated, and evidence for both positive and negative influences exists. Several recent investigations support the emerging paradigm that robust inflammation is detrimental to wound closure. This developing information suggests that the functional role of inflammatory cells in wound healing must be reevaluated.


Subject(s)
Neutrophils/physiology , Wound Healing , Animals , Cell Proliferation , Epithelial Cells , Humans , Immune System/physiology , Inflammation , Macrophages/metabolism
5.
J Leukoc Biol ; 73(4): 448-55, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12660219

ABSTRACT

The infiltration of neutrophils into injured tissue is known to protect wounds from invading pathogens. However, more recent studies suggest that neutrophils might inhibit the wound repair process. To investigate the role of neutrophils in wounds, mice were neutrophil-depleted by injection with rabbit anti-mouse neutrophil serum. Remarkably, epidermal healing, measured by wound closure, proceeded significantly faster in neutropenic than control mice (77.7+14.2% vs. 41.2+0.9%, P<0.02 at day 2). Dermal healing was not affected by neutrophil depletion, as neither collagen deposition nor wound-breaking strength was significantly different between neutropenic and control mice. As the delayed repair of diabetic individuals exhibits robust inflammation, the effect of neutrophil depletion on diabetic wound healing was investigated. Similar to the observations in wild-type mice, wound closure was accelerated by nearly 50% in neutropenic, diabetic mice. The results suggest that although neutrophils may provide protection against infection, they may retard wound closure.


Subject(s)
Diabetes Mellitus/physiopathology , Neutropenia/metabolism , Neutrophils/physiology , Skin/injuries , Wound Healing/physiology , Wounds and Injuries/metabolism , Animals , Collagen/metabolism , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Epithelial Cells/metabolism , Female , Flow Cytometry , Macrophages/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Peroxidase/analysis , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...