Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38676229

ABSTRACT

Positioning based on Global Navigation Satellite Systems (GNSSs) in urban environments always suffers from multipath and Non-Line-of-Sight (NLoS) effects. In such conditions, the GNSS pseudorange measurements can be affected by biases disrupting the GNSS-based applications. Many efforts have been devoted to detecting and mitigating the effects of multipath/NLoS, but the identification and classification of such events are still challenging. This research proposes a method for the post-processing estimation of pseudorange biases resulting from multipath/NLoS effects. Providing estimated pseudorange biases due to multipath/NLoS effects serves two main purposes. Firstly, machine learning-based techniques can leverage accurately estimated pseudorange biases as training data to detect and mitigate multipath/NLoS effects. Secondly, these accurately estimated pseudorange biases can serve as a benchmark for evaluating the effectiveness of the methods proposed to detect multipath/NLoS effects. The estimation is achieved by extracting the multipath/NLoS biases from pseudoranges using a clustering algorithm named Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The performance is demonstrated using two real-world data collections in multipath/NLoS scenarios for both static and dynamic conditions. Since there is no ground truth for the pseudorange biases due to the multipath/NLoS scenarios, the proposed method is validated based on the positioning performance. Positioning solutions are computed by subtracting the estimated biases from the raw pseudoranges and comparing them to the ground truth.

2.
Sensors (Basel) ; 24(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38257601

ABSTRACT

The disruptive effect of radio frequency interference (RFI) on global navigation satellite system (GNSS) signals is well known, and in the last four decades, many have been investigated as countermeasures. Recently, low-Earth orbit (LEO) satellites have been looked at as a good opportunity for GNSS RFI monitoring, and the last five years have seen the proliferation of many commercial and academic initiatives. In this context, this paper proposes a new spaceborne system to detect, classify, and localize terrestrial GNSS RFI signals, particularly jamming and spoofing, for civil use. This paper presents the implementation of the RFI detection software module to be hosted on a nanosatellite. The whole development work is described, including the selection of both the target platform and the algorithms, the implementation, the detection performance evaluation, and the computational load analysis. Two are the implemented RFI detectors: the chi-square goodness-of-fit (GoF) algorithm for non-GNSS-like interference, e.g., chirp jamming, and the snapshot acquisition for GNSS-like interference, e.g., spoofing. Preliminary testing results in the presence of jamming and spoofing signals reveal promising detection capability in terms of sensitivity and highlight room to optimize the computational load, particularly for the snapshot-acquisition-based RFI detector.

3.
Sensors (Basel) ; 22(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36560279

ABSTRACT

For the commercial sector, warehouses are becoming increasingly vital. Constant efforts are in progress to increase the efficiency of these facilities while reducing costs. The inventory part of the goods is a time-consuming task that impacts the company's revenue. This article presents an analysis of the performance of a state-of-the-art, visual-inertial odometry algorithm, SVO Pro Open, when varying the resolution and frequency of video streaming in an industrial environment. To perform efficiently this task, achieving an optimal system in terms of localization accuracy, robustness, and computational cost is necessary. Different resolutions are selected with a constant aspect ratio, and an accurate calibration for each resolution configuration is performed. A stable operating point in terms of robustness, accuracy of localization, and CPU utilization is found and the trends obtained are studied. To keep the system robust against sudden divergence, the feature loss factor extracted from optical sensors is analyzed. Innovative trends and translation errors on the order of a few tens of centimeters are achieved, allowing the system to navigate safely in the warehouse. The best result is obtained at a resolution of 636 × 600 px, where the localization errors (x, y, and z) are all under 0.25 m. In addition, the CPU (Central Processing Unit) usage of the onboard computer is kept below 60%, remaining usable for other relevant onboard processing tasks.


Subject(s)
Pentaerythritol Tetranitrate , Records , Algorithms , Calibration , Environment
4.
Front Robot AI ; 9: 950427, 2022.
Article in English | MEDLINE | ID: mdl-36035869

ABSTRACT

In the last decades, the increasing complexity of the fusion of proprioceptive and exteroceptive sensors with Global Navigation Satellite System (GNSS) has motivated the exploration of Artificial Intelligence related strategies for the implementation of the navigation filters. In order to meet the strict requirements of accuracy and precision for Intelligent Transportation Systems (ITS) and Robotics, Bayesian inference algorithms are at the basis of current Positioning, Navigation, and Timing (PNT). Some scientific and technical contributions resort to Sequential Importance Resampling (SIR) Particle Filters (PF) to overcome the theoretical weaknesses of the more popular and efficient Kalman Filters (KFs) when the application relies on non-linear measurements models and non-Gaussian measurements errors. However, due to its higher computational burden, SIR PF is generally discarded. This paper presents a methodology named Multiple Weighting (MW) that reduces the computational burden of PF by considering the mutual information provided by the input measurements about the unknown state. An assessment of the proposed scheme is shown through an application to standalone GNSS estimation as a baseline of more complex multi-sensors, integrated solutions. By relying on the a-priori knowledge of the relationship between states and measurements, a change in the conventional PF routine allows performing a more efficient sampling of the posterior distribution. Results show that the proposed strategy can achieve any desired accuracy with a considerable reduction in the number of particles. Given a fixed and reasonable available computational effort, the proposed scheme allows for an accuracy improvement of the state estimate in the range of 20-40%.

5.
Sensors (Basel) ; 21(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917083

ABSTRACT

In the last few years, all countries worldwide have fought the spread of SARS-CoV-2 (COVID-19) by exploiting Information and Communication Technologies (ICT) to perform contact tracing. In parallel, the pandemic has highlighted the relevance of mobility and social distancing among citizens. The monitoring of such aspects appeared prominent for reactive decision-making and the effective tracking of the infection chain. In parallel to the proximity sensing among people, indeed, the concept of social distancing has captured the attention to signal processing algorithms enabling short-to-medium range distance estimation to provide behavioral models in the emergency. By exploiting the availability of smart devices, the synergy between mobile network connectivity and Global Navigation Satellite Systems (GNSS), cooperative ranging approaches allow computing inter-personal distance measurements in outdoor environments through the exchange of light-weight navigation data among interconnected users. In this paper, a model for Inter-Agent Ranging (IAR) is provided and experimentally assessed to offer a naive collaborative distancing technique that leverages these features. Although the technique provides distance information, it does not imply the disclosure of the user's locations being intrinsically prone to protect sensitive user data. A statistical error model is presented and validated through synthetic simulations and real, on-field experiments to support implementation in GNSS-equipped mobile devices. Accuracy and precision of IAR measurements are compared to other consolidated GNSS-based techniques showing comparable performance at lower complexity and computational effort.


Subject(s)
COVID-19 , Contact Tracing , Humans , Pandemics , SARS-CoV-2 , Signal Processing, Computer-Assisted
6.
Sensors (Basel) ; 19(23)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795093

ABSTRACT

Scintillation caused by the electron density irregularities in the ionospheric plasma leads to rapid fluctuations in the amplitude and phase of the Global Navigation Satellite Systems (GNSS) signals. Ionospheric scintillation severely degrades the performance of the GNSS receiver in the signal acquisition, tracking, and positioning. By utilizing the GNSS signals, detecting and monitoring the scintillation effects to decrease the effect of the disturbing signals have gained importance, and machine learning-based algorithms have been started to be applied for the detection. In this paper, the performance of Support Vector Machines (SVM) for scintillation detection is discussed. The effect of the different kernel functions, namely, linear, Gaussian, and polynomial, on the performance of the SVM algorithm is analyzed. Performance is statistically assessed in terms of probabilities of detection and false alarm of the scintillation event. Real GNSS signals that are affected by significant phase and amplitude scintillation effect, collected at the South African Antarctic research base SANAE IV and Hanoi, Vietnam have been used in this study. This paper questions how to select a suitable kernel function by analyzing the data preparation, cross-validation, and experimental test stages of the SVM-based process for scintillation detection. It has been observed that the overall accuracy of fine Gaussian SVM outperforms the linear, which has the lowest complexity and running time. Moreover, the third-order polynomial kernel provides improved performance compared to linear, coarse, and medium Gaussian kernel SVMs, but it comes with a cost of increased complexity and running time.

7.
Sensors (Basel) ; 18(7)2018 Jul 07.
Article in English | MEDLINE | ID: mdl-29986503

ABSTRACT

Global navigation satellite systems play a significant role in the development of intelligent transport systems, where the estimation of the vehicle’s position is a key element. However, in strongly constrained environments such as city centers, the definition of quality metrics and the assessment of positioning performances are challenges to be addressed. Due to the variability of different urban scenarios, the modeling of the dynamics as well as the architecture of the positioning platform, which might embed other sensors and aiding means to the GNSS unit, make it hard to define unambiguous positioning metrics. Performance assessment through analytical models and simulators can be ineffective in terms of cost, complexity, and general validity and scalability of the results. This paper shows how a record and replay approach can be an efficient solution to grant fidelity to a realistic scenario. This work discusses advantages and disadvantages with emphasis on the case study of harsh scenarios. Such an approach requires proper data collections that allow the replay phase to test the GNSS-based positioning terminals. This paper presents the results obtained on a set of field tests related to different scenarios, selected as representative for the key performance indicators assessment.

8.
Sensors (Basel) ; 16(12)2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27918415

ABSTRACT

In this paper, the Extended Coupled Amplitude Delay Lock Loop (ECADLL) architecture, previously introduced as a solution able to deal with a multipath environment, is revisited and improved to tailor it to spoofing detection purposes. Exploiting a properly-defined decision algorithm, the architecture is able to effectively detect a spoofer attack, as well as distinguish it from other kinds of interference events. The new algorithm is used to classify them according to their characteristics. We also introduce the use of a ratio metric detector in order to reduce the detection latency and the computational load of the architecture.

9.
Sensors (Basel) ; 13(8): 9549-88, 2013 Jul 24.
Article in English | MEDLINE | ID: mdl-23887084

ABSTRACT

Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.


Subject(s)
Accelerometry/instrumentation , Accelerometry/methods , Computer-Aided Design , Geographic Information Systems/instrumentation , Micro-Electrical-Mechanical Systems/instrumentation , Micro-Electrical-Mechanical Systems/methods , Models, Statistical , Computer Simulation , Equipment Design , Equipment Failure Analysis , Systems Integration , Transducers
10.
Sensors (Basel) ; 12(11): 14592-603, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23202177

ABSTRACT

In this paper, multipath error on Global Navigation Satellite System (GNSS) signals in urban environments is characterized with the help of Light Detection and Ranging (LiDAR) measurements. For this purpose, LiDAR equipment and Global Positioning System (GPS) receiver implementing a multipath estimating architecture were used to collect data in an urban environment. This paper demonstrates how GPS and LiDAR measurements can be jointly used to model the environment and obtain robust receivers. Multipath amplitude and delay are estimated by means of LiDAR feature extraction and multipath mitigation architecture. The results show the feasibility of integrating the information provided by LiDAR sensors and GNSS receivers for multipath mitigation.

11.
Sensors (Basel) ; 12(11): 15983-6007, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23202241

ABSTRACT

The paper investigates approaches for loosely coupled GPS/INS integration. Error performance is calculated using a reference trajectory. A performance improvement can be obtained by exploiting additional map information (for example, a road boundary). A constrained solution has been developed and its performance compared with an unconstrained one. The case of GPS outages is also investigated showing how a Kalman filter that operates on the last received GPS position and velocity measurements provides a performance benefit. Results are obtained by means of simulation studies and real data.

SELECTION OF CITATIONS
SEARCH DETAIL
...