Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 19(6): 1311-1319, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38814157

ABSTRACT

Currently, the CRISPR-Cas9 system serves as a prevalent tool for genome editing and gene expression regulation. Its therapeutic application is limited by off-target effects that can affect genomic integrity through nonspecific, undesirable changes in the genome. Various strategies have been explored to mitigate the off-target effects. Many approaches focus on modifying components of the system, namely, Cas9 and guide RNAs, to enhance specificity. However, a common challenge is that methods aiming to increase specificity often result in a significant reduction in the editing efficiency. Here, we introduce a novel approach to modifying crRNA to balance CRISPR-Cas9 specificity and efficiency. Our approach involves incorporating nucleoside modifications, such as replacing ribo- to deoxyribonucleosides and backbone modifications, using phosphoryl guanidine groups, specifically 1,3-dimethylimidazolidin-2-ylidene phosphoramidate. In this case, within the first 10 nucleotides from the 5' crRNA end, phosphodiester bonds are substituted with phosphoryl guanidine groups. We demonstrate that crRNAs containing a combination of deoxyribonucleosides and single or multiple phosphoryl guanidine groups facilitate the modulation of CRISPR-Cas9 system activity while improving its specificity in vitro.


Subject(s)
CRISPR-Cas Systems , DNA , Gene Editing , Guanidine , RNA, Guide, CRISPR-Cas Systems , DNA/chemistry , DNA/metabolism , Gene Editing/methods , Guanidine/chemistry , RNA, Guide, CRISPR-Cas Systems/chemistry , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA/chemistry , RNA/metabolism , Humans , Guanidines/chemistry
2.
Nanomaterials (Basel) ; 13(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38132992

ABSTRACT

Spontaneous sorption of proteins on the nanoparticles' surface leads to the fact that nanoparticles in biological media are always enveloped by a layer of proteins-the protein corona. Corona proteins affect the properties of nanoparticles and their behavior in a biological environment. In this regard, knowledge about the composition of the corona is a necessary element for the development of nanomedicine. Because proteins have different sorption efficacy, isolating particles with a full corona and characterizing the full corona is challenging. In this study, we propose a photo-activated cross-linker for full protein corona fixation. We believe that the application of our proposed approach will make it possible to capture and visualize the full corona on nanoparticles coated with a lipid shell.

3.
Nanomaterials (Basel) ; 12(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558301

ABSTRACT

Small interfering RNAs (siRNAs) are a powerful tool for specific suppression of protein synthesis in the cell, and this determines the attractiveness of siRNAs as a drug. Low resistance of siRNA to nucleases and inability to enter into target cells are the most crucial issues in developing siRNA-based therapy. To face this challenge, we designed multilayer nanoconstruct (MLNC) with AuNP core bearing chemically modified siRNAs. We applied chemical modifications 2'-OMe and 2'-F substitutions as well as their combinations with phosphoryl guanidine group in the internucleotide phosphate. The effect of modification on the efficiency of siRNA loading into nanocarriers was examined. The introduction of the internucleotide modifications into at least one of the strands raised the efficiency of siRNA adsorption on the surface of gold core. We also tested the stability of modified siRNA adsorbed on gold core in the presence of serum. Based on loading efficiency and stability, MLNCs with the most siRNA effective cargo were selected, and they showed an increase in biological activity compared to control MLNCs. Our study demonstrated the effect of chemical modifications of siRNA on its binding to the AuNP-based carrier, which directly affects the efficiency of target protein expression inhibition.

4.
Nanomaterials (Basel) ; 11(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34835540

ABSTRACT

There is an urgent need to develop systems for nucleic acid delivery, especially for the creation of effective therapeutics against various diseases. We have previously shown the feasibility of efficient delivery of small interfering RNA by means of gold nanoparticle-based multilayer nanoconstructs (MLNCs) for suppressing reporter protein synthesis. The present work is aimed at improving the quality of preparations of desired MLNCs, and for this purpose, optimal conditions for their multistep fabrication were found. All steps of this process and MLNC purification were verified using dynamic light scattering, transmission electron microscopy, and UV-Vis spectroscopy. Factors influencing the efficiency of nanocomposite assembly, colloidal stability, and purification quality were identified. These data made it possible to optimize the fabrication of target MLNCs bearing small interfering RNA and to substantially improve end product quality via an increase in its homogeneity and a decrease in the amount of incomplete nanoconstructs. We believe that the proposed approaches and methods will be useful for researchers working with lipid nanoconstructs.

5.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34575949

ABSTRACT

Small interfering RNA (siRNA) is the most important tool for the manipulation of mRNA expression and needs protection from intracellular nucleases when delivered into the cell. In this work, we examined the effects of siRNA modification with the phosphoryl guanidine (PG) group, which, as shown earlier, makes oligodeoxynucleotides resistant to snake venom phosphodiesterase. We obtained a set of siRNAs containing combined modifications PG/2'-O-methyl (2'-OMe) or PG/2'-fluoro (2'-F); biophysical and biochemical properties were characterized for each duplex. We used the UV-melting approach to estimate the thermostability of the duplexes and RNAse A degradation assays to determine their stability. The ability to induce silencing was tested in cultured cells stably expressing green fluorescent protein. The introduction of the PG group as a rule decreased the thermodynamic stability of siRNA. At the same time, the siRNAs carrying PG groups showed increased resistance to RNase A. A gene silencing experiment indicated that the PG-modified siRNA retained its activity if the modifications were introduced into the passenger strand.


Subject(s)
Oligodeoxyribonucleotides/genetics , RNA, Double-Stranded/antagonists & inhibitors , RNA, Small Interfering/genetics , Ribonucleases/genetics , Guanidine/chemistry , Humans , Oligodeoxyribonucleotides/antagonists & inhibitors , Oligodeoxyribonucleotides/pharmacology , RNA Interference , RNA, Double-Stranded/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology , Ribonuclease, Pancreatic/chemistry , Ribonuclease, Pancreatic/genetics , Ribonucleases/chemistry , Thermodynamics
6.
Methods Mol Biol ; 2277: 49-67, 2021.
Article in English | MEDLINE | ID: mdl-34080144

ABSTRACT

Defects in human mitochondrial genome can cause a wide range of clinical disorders that still do not have efficient therapies. The natural pathway of small noncoding RNA import can be exploited to address therapeutic RNAs into the mitochondria. To create an approach of carrier-free targeting of RNA into living human cells, we designed conjugates containing a cholesterol residue and developed the protocols of chemical synthesis of oligoribonucleotides conjugated with cholesterol residue through cleavable pH-triggered hydrazone bond. The biodegradable conjugates of importable RNA with cholesterol can be internalized by cells in a carrier-free manner; RNA can then be released in the late endosomes due to a change in pH and partially targeted into mitochondria. Here we provide detailed protocols for solid-phase and "in solution" chemical synthesis of oligoribonucleotides conjugated to a cholesterol residue through a hydrazone bond. We describe the optimization of the carrier-free cell transfection with these conjugated RNA molecules and methods for evaluating the cellular and mitochondrial uptake of lipophilic conjugates.


Subject(s)
Mitochondria/genetics , Oligoribonucleotides/chemical synthesis , RNA/chemistry , Transfection/methods , Cells, Cultured , Cholesterol/chemistry , Humans , Hydrazones/chemistry , Hydrogen-Ion Concentration , RNA/administration & dosage
7.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003636

ABSTRACT

The conjugation of lipophilic groups to oligonucleotides is a promising approach for improving nucleic acid-based therapeutics' intracellular delivery. Lipid oligonucleotide conjugates can self-aggregate in aqueous solution, which gains much attention due to the formation of micellar particles suitable for cell endocytosis. Here, we describe self-association features of novel "like-a-brush" oligonucleotide conjugates bearing three dodecyl chains. The self-assembly of the conjugates into 30-170 nm micellar particles with a high tendency to aggregate was shown using dynamic light scattering (DLS), atomic force (AFM), and transmission electron (TEM) microscopies. Fluorescently labeled conjugates demonstrated significant quenching of fluorescence intensity (up to 90%) under micelle formation conditions. The conjugates possess increased binding affinity to serum albumin as compared with free oligonucleotides. The dodecyl oligonucleotide conjugate and its duplex efficiently internalized and accumulated into HepG2 cells' cytoplasm without any transfection agent. It was shown that the addition of serum albumin or fetal bovine serum to the medium decreased oligonucleotide uptake efficacy (by 22.5-36%) but did not completely inhibit cell penetration. The obtained results allow considering dodecyl-containing oligonucleotides as scaffold compounds for engineering nucleic acid delivery vehicles.

8.
J Phys Chem B ; 123(41): 8829-8837, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31539247

ABSTRACT

Nanoconstructions composed of lipid vesicles and inorganic units (nanoparticles, metal complexes) arouse much interest across materials science and nanotechnology as hybrid materials combining useful functionalities from both parts. Ideally, these units are to be embedded into the bilayer to keep the biophysical performance of lipid vesicles having inorganic moieties screened from the environment. This can be achieved by doping a lipid bilayer with cluster complexes of transition metals. In this work, we report the preparation of nanoparticles from trinuclear W3S4 cluster complexes and egg phosphatidylcholine. A systematic study of their properties was performed by the differential scanning calorimetry, NMR spectroscopy, dynamic light scattering, and transmission electron microscopy. Phospholipids and clusters have been found to spontaneously self-assemble into novel cluster-lipid hybrid materials. The behavior of clusters in the hydrophobic lipid environment is determined by the structure of the ligands and cluster-to-lipid ratio. Intact cluster complexes bearing compact hydrophobic ligands are embedded into the hydrophobic midplane of a lipid bilayer, whereas cluster complexes bearing larger ligands drive the aggregation of lipids and cluster complexes. Considering these differences, it could be possible to obtain different self-assembled associates such as cluster-doped liposomes or lipid-covered crystals. These cluster-lipid hybrids can be a platform for the design of new materials for nanotechnology.


Subject(s)
Lipid Bilayers/metabolism , Liposomes/metabolism , Phospholipids/metabolism , Tungsten/metabolism , Dynamic Light Scattering , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Liposomes/chemistry , Nanotechnology , Phospholipids/chemistry , Tungsten/chemistry
9.
Data Brief ; 25: 104148, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31312699

ABSTRACT

This article presents new data on the properties of the diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotides d(TpCp*A) [1,2]. The data include information on isolation, identification, treatment with snake venom phosphodiesterase and structural analysis by 1D and 2D NMR spectroscopy and restrained molecular dynamics analysis. The data can be used for preparation, analysis, application of phosphoryl guanidine oligonucleotide and for development of new nucleic acids derivatives. This data article is associated with the manuscript titled "Diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotide: isolation and properties" [1].

10.
Biochem Biophys Res Commun ; 513(4): 807-811, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31000201

ABSTRACT

Recently, a new type of nucleic acid analogues with modified phosphate group, namely, phosphoryl guanidine oligonucleotides, has been described. In the present work, we assess the difference between diastereomers of a mono-substituted phosphoryl guanidine oligonucleotide and analyze their resistance to nuclease digestion. Individual diastereomers ('fast' and 'slow') of a trideoxynucleotide d (TpCp*A) were isolated by reverse-phase HPLC. Snake venom phosphodiesterase digestion showed that the native trideoxynucleotide was fully degraded after 30 min, whereas both 'fast' and 'slow' diastereomers of d (TpCp*A) were not completely digested even after 7 days. UV and CD spectra revealed similarities in the structure of the diastereomers. Structural analysis by 1D and 2D NMR spectroscopy also uncovered significant similarity in the properties of Rp and Sp diastereomers. Structural analysis of nuclear Overhauser effect spectroscopy (NOESY) data and restrained molecular dynamics methods showed very flexible single-stranded oligonucleotide structures. Detailed computational analysis of restraint penalty energies via restrained molecular dynamics simulations with the 2D NMR interproton distance data allowed us to conclude that most likely, the 'fast' isomer is the Sp diastereomer, and the 'slow' isomer is the Rp diastereomer.


Subject(s)
Guanidine/chemistry , Oligonucleotides/chemistry , Phosphates/chemistry , Circular Dichroism , Guanidine/isolation & purification , Magnetic Resonance Spectroscopy , Oligonucleotides/isolation & purification , Phosphoric Diester Hydrolases/metabolism , Spectrophotometry, Ultraviolet , Stereoisomerism , Thermodynamics
11.
Int J Mol Sci ; 19(7)2018 Jul 19.
Article in English | MEDLINE | ID: mdl-30029512

ABSTRACT

Elaboration of non-viral vehicles for delivery of therapeutic nucleic acids, in particular siRNA, into a cell is an actively growing field. Gold nanoparticles (AuNPs) occupy a noticeable place in these studies, and various nanoconstructions containing AuNPs are reported. We aimed our work to the rational design of AuNPs-based siRNA delivery vehicle with enhanced transfection efficiency. We optimized the obtaining of non-covalent siRNAs-AuNPs cores: ionic strength, temperature and reaction time were determined. Formation of cores was confirmed using gel electrophoresis. Stable associates were prepared, and then enveloped into a lipid layer composed of phosphatidylcholine, phosphatidylethanolamine and novel pH-sensitive lipidoid. The constructions were modified with [Str-(RL)4G-NH2] peptide (the resulting construction). All intermediate and resulting nanoconstructions were analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM) to control their physico-chemical properties. To examine the biological effect of the delivery vehicle, green fluorescent protein (GFP)-expressing human embryonic kidney (HEK) Phoenix cells were incubated with the resulting construction containing anti-GFP siRNA, with the siRNA effect being studied by flow cytometry and confocal microscopy. Transfection of the cells with the resulting construction reduced the GFP fluorescence as efficiently as Lipofectamin 3000. Thus, siRNA vehicle based on non-covalently bound siRNA-AuNP core and enveloped into a lipid layer provides efficient delivery of siRNA into a cell followed by specific gene silencing.


Subject(s)
Gene Transfer Techniques , Gold/chemistry , Lipids/chemistry , Metal Nanoparticles/chemistry , Peptides/chemistry , RNA, Small Interfering/metabolism , Surface-Active Agents/chemistry , Cell Line , Gene Silencing , Green Fluorescent Proteins/metabolism , Humans , Hydrogen-Ion Concentration , Liposomes/chemistry , Metal Nanoparticles/ultrastructure
12.
Nucleosides Nucleotides Nucleic Acids ; 37(2): 102-111, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29424633

ABSTRACT

This paper explores the potential of a modified phosphotriester approach to the synthesis of 5'-phosphoramidate derivatives of DNA and RNA oligonucleotides. The modification of 5'-deprotected support-bound oligonucleotides is done in two steps: i) conversion of the 5'-OH group of an oligonucleotide into an activated phosphodiester, and ii) treatment of the activated phosphodiester with an aminocompound. The approach is efficient and compatible with conventional solid phase oligonucleotide synthesis. It can be used for the conjugation of therapeutically relevant oligonucleotides with functional moieties or carrier constructions, which are to be removed after endocytosis.


Subject(s)
DNA/chemistry , Oligonucleotides/chemical synthesis , Organophosphorus Compounds/chemical synthesis , RNA/chemistry , Molecular Structure , Solid-Phase Synthesis Techniques
13.
Biomaterials ; 76: 408-17, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26561937

ABSTRACT

Defects in mitochondrial DNA often cause neuromuscular pathologies, for which no efficient therapy has yet been developed. MtDNA targeting nucleic acids might therefore be promising therapeutic candidates. Nevertheless, mitochondrial gene therapy has never been achieved because DNA molecules can not penetrate inside mitochondria in vivo. In contrast, some small non-coding RNAs are imported into mitochondrial matrix, and we recently designed mitochondrial RNA vectors that can be used to address therapeutic oligoribonucleotides into human mitochondria. Here we describe an approach of carrier-free targeting of the mitochondrially importable RNA into living human cells. For this purpose, we developed the protocol of chemical synthesis of oligoribonucleotides conjugated with cholesterol residue through cleavable covalent bonds. Conjugates containing pH-triggered hydrazone bond were stable during the cell transfection procedure and rapidly cleaved in acidic endosomal cellular compartments. RNAs conjugated to cholesterol through a hydrazone bond were characterized by efficient carrier-free cellular uptake and partial co-localization with mitochondrial network. Moreover, the imported oligoribonucleotide designed to target a pathogenic point mutation in mitochondrial DNA was able to induce a decrease in the proportion of mutant mitochondrial genomes. This newly developed approach can be useful for a carrier-free delivery of therapeutic RNA into mitochondria of living human cells.


Subject(s)
Drug Carriers , Mitochondria/metabolism , RNA/administration & dosage , Humans , Microscopy, Confocal
14.
Methods Mol Biol ; 1265: 209-25, 2015.
Article in English | MEDLINE | ID: mdl-25634278

ABSTRACT

Mitochondrial import of small noncoding RNA is found in a large variety of species. In mammalian cells, this pathway can be used for therapeutic purpose, to restore the mitochondrial functions affected by pathogenic mutations. Recently, we developed mitochondrial RNA vectors able to address therapeutic oligoribonucleotides into human mitochondria. Here we provide the protocol for transfection of cultured human cells with small recombinant RNA molecules and describe two approaches useful to demonstrate their import into mitochondria: (1) isolation of RNA from purified mitochondria and quantitative hybridization analysis and (2) confocal microscopy of cells transfected with fluorescently labeled RNA. These protocols can be used in combination with overexpression or downregulation of protein import factors to detect and to evaluate their influence on the mitochondrial import of various RNAs.


Subject(s)
Mitochondria/genetics , Mitochondria/metabolism , RNA/genetics , Cells, Cultured , Gene Expression , Humans , Microscopy, Confocal , Microscopy, Fluorescence , RNA/metabolism , RNA Transport , RNA, Mitochondrial , RNA, Small Interfering/genetics , Transfection
15.
J Biol Chem ; 289(19): 13323-34, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24692550

ABSTRACT

Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Presently, no efficient therapeutic treatment has been developed against this class of pathologies. Because most of deleterious mitochondrial mutations are heteroplasmic, meaning that wild type and mutated forms of mitochondrial DNA (mtDNA) coexist in the same cell, the shift in proportion between mutant and wild type molecules could restore mitochondrial functions. Recently, we developed mitochondrial RNA vectors that can be used to address anti-replicative oligoribonucleotides into human mitochondria and thus impact heteroplasmy level in cells bearing a large deletion in mtDNA. Here, we show that this strategy can be also applied to point mutations in mtDNA. We demonstrate that specifically designed RNA molecules containing structural determinants for mitochondrial import and 20-nucleotide sequence corresponding to the mutated region of mtDNA, are able to anneal selectively to the mutated mitochondrial genomes. After being imported into mitochondria of living human cells in culture, these RNA induced a decrease of the proportion of mtDNA molecules bearing a pathogenic point mutation in the mtDNA ND5 gene.


Subject(s)
DNA, Mitochondrial/metabolism , Electron Transport Complex I/metabolism , Genetic Therapy/methods , Mitochondrial Diseases/therapy , Mitochondrial Proteins/metabolism , Point Mutation , RNA/metabolism , Adolescent , Base Sequence , Cell Line , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Humans , Male , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , RNA/genetics , RNA, Mitochondrial , Sequence Deletion
16.
Biochimie ; 100: 192-9, 2014 May.
Article in English | MEDLINE | ID: mdl-23994754

ABSTRACT

Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Most of the deleterious mitochondrial mutations are heteroplasmic, meaning that wild type and mutated forms of mtDNA coexist in the same cell. Therefore, a shift in the proportion between mutant and wild type molecules could restore mitochondrial functions. The anti-replicative strategy aims to induce such a shift in heteroplasmy by mitochondrial targeting specifically designed molecules in order to inhibit replication of mutant mtDNA. Recently, we developed mitochondrial RNA vectors that can be used to address anti-replicative oligoribonucleotides into human mitochondria and impact heteroplasmy level, however, the effect was mainly transient, probably due to a rapid degradation of RNA molecules. In the present study, we introduced various chemically modified oligonucleotides in anti-replicative RNAs. We show that the most important increase of anti-replicative molecules' lifetime can be achieved by using synthetic RNA-DNA chimerical molecules or by ribose 2'-O-methylation in nuclease-sensitive sites. The presence of inverted thymidine at 3' terminus and modifications of 2'-OH ribose group did not prevent the mitochondrial uptake of the recombinant molecules. All the modified oligonucleotides were able to anneal specifically with the mutant mtDNA fragment, but not with the wild-type one. Nevertheless, the modified oligonucleotides did not cause a significant effect on the heteroplasmy level in transfected transmitochondrial cybrid cells bearing a pathogenic mtDNA deletion, proving to be less efficient than non-modified RNA molecules.


Subject(s)
Chimera/genetics , DNA, Mitochondrial/antagonists & inhibitors , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mitochondrial Diseases/genetics , Oligoribonucleotides/genetics , Cells, Cultured , Chimera/metabolism , DNA, Mitochondrial/metabolism , Gene Expression Regulation , Genetic Heterogeneity , Genetic Vectors , Genotype , Humans , Inheritance Patterns , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mitosis , Molecular Targeted Therapy , Mutation , Oligoribonucleotides/chemical synthesis , Oligoribonucleotides/metabolism , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...