Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39257815

ABSTRACT

The continued emergence of antimalarial drug resistance highlights the need to develop new antimalarial therapies. Unfortunately, new drug development is often hampered by poor drug-like properties of lead compounds. Prodrugging temporarily masks undesirable compound features, improving bioavailability and target penetration. We have found that lipophilic diester prodrugs of phosphonic acid antibiotics, such as fosmidomycin, exhibit significantly higher antimalarial potency than their parent compounds (1). However, the activating enzymes for these prodrugs were unknown. Here, we show that an erythrocyte enzyme, acylpeptide hydrolase (APEH) is the major activating enzyme of multiple lipophilic ester prodrugs. Surprisingly, this enzyme is taken up by the malaria parasite, Plasmodium falciparum, where it localizes to the parasite cytoplasm and retains enzymatic activity. Using a novel fluorogenic ester library, we characterize the structure activity relationship of APEH, and compare it to that of P. falciparum esterases. We show that parasite-internalized APEH plays an important role in the activation of substrates with branching at the alpha carbon, in keeping with its exopeptidase activity. Our findings highlight a novel mechanism for antimicrobial prodrug activation, relying on a host-derived enzyme to yield activation at a microbial target. Mutations in prodrug activating enzymes are a common mechanism for antimicrobial drug resistance (2-4). Leveraging an internalized host enzyme would circumvent this, enabling the design of prodrugs with higher barriers to drug resistance.

2.
J Med Chem ; 44(20): 3283-91, 2001 Sep 27.
Article in English | MEDLINE | ID: mdl-11563927

ABSTRACT

Certain phenylethylamines, such as 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane (DOB; 1a), are high-affinity 5-HT(2) agonists. Previous structure-affinity studies have concluded that both the 2,5-dimethoxy substitution pattern and the nature of substituents at the 4-position are important determinants of high affinity. We recently demonstrated that replacement of the bromo group of DOB with a 3-(phenyl)propyl substituent results in retention of affinity and that, counter to established structure-affinity relationships, the 2,5-dimethoxy substitution pattern is no longer a requirement for the binding. The present investigation extends these findings by examining a series of analogues, 3, lacking a 5-methoxy group. It was additionally found that shifting the phenylalkyl substituent from the 4- to the 5-position (e.g., 4i) also results in retention of affinity. For example, 1-(2-methoxy-5-(3-phenylpropyl)-2-aminopropane (6; the alpha-methyl derivative of 4i) binds at 5-HT(2A) receptors with high affinity (K(i) = 13 nM) and possesses 5-HT(2A) antagonist character. Thus, not only is the 2,5-dimethoxy substitution pattern not a requirement for the binding of certain phenylethylamines at 5-HT(2A) receptors, the presence of a 4-position substituent (previously thought to serve as a modulator of affinity of DOB-like agents) is also not required. Striking differences in the 5-HT(2A) binding requirements of the present compounds as compared to DOB-like agents suggest multiple substituent-dependent modes of binding.


Subject(s)
Propylamines/chemical synthesis , Receptors, Serotonin/metabolism , Serotonin Antagonists/chemical synthesis , 3T3 Cells , Animals , Cells, Cultured , Hydrolysis , Inositol Phosphates/metabolism , Mice , Models, Molecular , Muscle, Smooth, Vascular/cytology , Propylamines/chemistry , Propylamines/metabolism , Propylamines/pharmacology , Radioligand Assay , Rats , Receptor, Serotonin, 5-HT2A , Receptor, Serotonin, 5-HT2C , Serotonin Antagonists/chemistry , Serotonin Antagonists/metabolism , Serotonin Antagonists/pharmacology , Structure-Activity Relationship
3.
J Pept Res ; 57(6): 507-18, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11437954

ABSTRACT

Binding of HIV-1 gp120 to T-cell receptor CD4 initiates conformational changes in the viral envelope that trigger viral entry into host cells. Phage epitope randomization of a beta-turn loop of a charybdotoxin-based miniprotein scaffold was used to identify peptides that can bind gp120 and block the gp120-CD4 interaction. We describe here the display of the charybdotoxin scaffold on the filamentous phage fUSE5, its use to construct a beta-turn library, and miniprotein sequences identified through library panning with immobilized Env gp120. Competition enzyme-linked immunosorbent assay (ELISA) identified high-frequency phage selectants for which specific gp120 binding was competed by sCD4. Several of these selectants contain hydrophobic residues in place of the Phe that occurs in the gp120-binding beta-turns of both CD4 and previously identified scorpion toxin CD4 mimetics. One of these selectants, denoted TXM[24GQTL27], contains GQTL in place of the CD4 beta-turn sequence 40QGSF43. TXM[24GQTL27] peptide was prepared using solid-phase chemical synthesis, its binding to gp120 demonstrated by optical biosensor kinetics analysis and its affinity for the CD4 binding site of gp120 confirmed by competition ELISA. The results demonstrate that aromatic-less loop-containing CD4 recognition mimetics can be formed with detectable envelope protein binding within a beta-turn of the charybdotoxin miniprotein scaffold. The results of this work establish a methodology for phage display of a charybdotoxin miniprotein scaffold and point to the potential value of phage-based epitope randomization of this miniprotein for identifying novel CD4 mimetics. The latter are potentially useful in deconvoluting structural determinants of CD4-HIV envelope recognition and possibly in designing antagonists of viral entry.


Subject(s)
CD4 Antigens/metabolism , Charybdotoxin/metabolism , Enzyme-Linked Immunosorbent Assay , HIV Envelope Protein gp120/metabolism , HIV-1/metabolism , Peptide Fragments/metabolism , Base Sequence , Binding Sites/physiology , Chromatography, Affinity , Epitopes/metabolism , Humans , Molecular Sequence Data , Peptide Library , Peptides/chemical synthesis , Peptides/chemistry , Peptides/metabolism
4.
J Chromatogr B Biomed Sci Appl ; 753(2): 327-35, 2001 Apr 05.
Article in English | MEDLINE | ID: mdl-11334348

ABSTRACT

Understanding the ways in which two or more proteins interact may give insight into underlying binding and activation mechanisms in biology, methods for protein separation and structure-based antagonism. This review describes ways in which protein recognition has been explored in our laboratory for the HIV-1/cell entry process. Initial contact between an HIV-1 virion particle and a human cell occurs between gp120 (an HIV-1 envelope protein) and CD4 (a human extracellular signaling protein). This interaction leads to a sequence of events which includes a conformational change in gp120, fusion of the HIV-1 and cellular membranes and eventual infection of the cell. Using an optical biosensor and a reporter antibody, we have been able to measure the conformational change in gp120 that occurs upon CD4 binding. We also have used this biosensor system to characterize CD4 mimetics, obtained by peptide synthesis in miniprotein scaffolds. Phage display techniques have been employed to identify novel miniprotein sequences. The combination of biosensor interaction kinetics analysis and phage display provides a useful approach for understanding the recognition mechanisms involved in the HIV/cell docking process. This approach may also be useful in investigating other protein complexes of importance in health and disease.


Subject(s)
HIV-1/drug effects , Molecular Mimicry , CD4 Antigens/metabolism , HIV Envelope Protein gp120/metabolism , HIV-1/physiology
5.
J Med Chem ; 43(16): 3074-84, 2000 Aug 10.
Article in English | MEDLINE | ID: mdl-10956215

ABSTRACT

Phenylalkylamines such as 1-(4-bromo-2, 5-dimethoxyphenyl)-2-aminopropane (DOB; 1a) and its corresponding iodo derivative DOI (2) are commonly used 5-HT(2) serotonin agonists. Previous studies have established that the 2,5-dimethoxy substitution pattern found in these compounds is optimal for high affinity at 5-HT(2A) receptors and that substituents at the 4-position can modulate affinity over a wide range. We have previously shown, however, that when the 4-position is substituted with a 3-phenylpropyl substituent (i.e., 3), the compound binds with an affinity comparable to that of 1a but that it possesses 5-HT(2A) antagonist character. The present study examined the structure-affinity relationships of 3, and the results were very much unexpected. That is, the 2,5-dimethoxy substitution pattern of 3 is not required for high affinity. Either of the two methoxy groups can be removed without untoward effect on affinity, and relocation of the methoxy substituents actually enhances affinity by as much as an order of magnitude. None of the compounds displayed more than 20-fold selectivity for 5-HT(2A) over 5-HT(2C) receptors. In addition, several were demonstrated to act as 5-HT(2A) partial agonists. As such, the results of this study suggest that the structure-affinity relationships of phenylalkylamines as 5-HT(2A) ligands now be reinvestigated in greater detail.


Subject(s)
Propylamines/chemical synthesis , Receptors, Serotonin/drug effects , Serotonin Antagonists/chemical synthesis , Serotonin Receptor Agonists/chemical synthesis , 3T3 Cells , Animals , Cell Line , Inositol Phosphates/metabolism , Ligands , Mice , Propylamines/chemistry , Propylamines/metabolism , Radioligand Assay , Rats , Receptor, Serotonin, 5-HT2A , Receptor, Serotonin, 5-HT2C , Receptors, Serotonin/metabolism , Serotonin Antagonists/chemistry , Serotonin Antagonists/metabolism , Serotonin Receptor Agonists/chemistry , Serotonin Receptor Agonists/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL