Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
RSC Med Chem ; 15(7): 2422-2439, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39026652

ABSTRACT

In Mycobacterium tuberculosis (Mtb) and Plasmodium falciparum (Pf), the methylerythritol phosphate (MEP) pathway is responsible for isoprene synthesis. This pathway and its products are vital to bacterial/parasitic metabolism and survival, and represent an attractive set of drug targets due to their essentiality in these pathogens but absence in humans. The second step in the MEP pathway is the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) to MEP and is catalyzed by 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR). Natural products fosmidomycin and FR900098 inhibit DXR, but are too polar to reach the desired target inside some cells, such as Mtb. Synthesized FR900098 analogs with lipophilic substitution in the position α to the phosphorous atom showed promise, resulting in increased activity against Mtb and Pf. Here, an α substitution, consisting of a 3,4-dichlorophenyl substituent, in combination with various O-linked alkylaryl substituents on the hydroxamate moiety is utilized in the synthesis of a novel series of FR900098 analogs. The purpose of the O-linked alkylaryl substituents is to further enhance DXR inhibition by extending the structure into the adjacent NADPH binding pocket, blocking the binding of both DXP and NADPH. Of the initial O-linked alkylaryl substituted analogs, compound 6e showed most potent activity against Pf parasites at 3.60 µM. Additional compounds varying the phenyl ring of 6e were synthesized. The most potent phosphonic acids, 6l and 6n, display nM activity against PfDXR and low µM activity against Pf parasites. Prodrugs of these compounds were less effective against Pf parasites but showed modest activity against Mtb cells. Data from this series of compounds suggests that this combination of substituents can be advantageous in designing a new generation of antimicrobials.

2.
ACS Infect Dis ; 9(7): 1387-1395, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37310810

ABSTRACT

Malaria, a mosquito-borne disease caused by several parasites of the Plasmodium genus, remains a huge threat to global public health. There are an estimated 0.5 million malaria deaths each year, mostly among African children. Unlike humans, Plasmodium parasites and a number of important pathogenic bacteria employ the methyl erythritol phosphate (MEP) pathway for isoprenoid synthesis. Thus, the MEP pathway represents a promising set of drug targets for antimalarial and antibacterial compounds. Here, we present new unsaturated MEPicide inhibitors of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of the MEP pathway. A number of these compounds have demonstrated robust inhibition of Plasmodium falciparum DXR, potent antiparasitic activity, and low cytotoxicity against HepG2 cells. Parasites treated with active compounds are rescued by isopentenyl pyrophosphate, the product of the MEP pathway. With higher levels of DXR substrate, parasites acquire resistance to active compounds. These results further confirm the on-target inhibition of DXR in parasites by the inhibitors. Stability in mouse liver microsomes is high for the phosphonate salts, but remains a challenge for the prodrugs. Taken together, the potent activity and on-target mechanism of action of this series further validate DXR as an antimalarial drug target and the α,ß-unsaturation moiety as an important structural component.


Subject(s)
Antimalarials , Fosfomycin , Child , Humans , Animals , Mice , Plasmodium falciparum , Fosfomycin/pharmacology , Fosfomycin/chemistry , Pentosephosphates/metabolism , Antimalarials/pharmacology , Antimalarials/chemistry
3.
Med Chem Res ; 31(2): 207-216, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35492863

ABSTRACT

Phosphoryl prodrugs are key compounds in drug development. Biologically active phosphoryl compounds often have negative charges on the phosphoryl group, and as a result, frequently have poor pharmacokinetic (PK) profiles. The use of lipophilic moieties bonded to the phosphorus (or attached oxygen atoms) masks the negative charge of the phosphoryl group, cleavage releasing the active molecule. The use of prodrugs to improve the PK of active parent molecules is an essential step in drug development. This review highlights promising trends in terminal elimination half-life, Cmax, clearance, oral bioavailability, and cLogP in phosphoryl prodrugs. We focus on specific prodrug families: esters, amidates, and ProTides. We conclude that moderating lipophilicity is a key part of prodrug success. This type of evaluation is important for drug development, regardless of clinical application. It is our hope that this analysis, and future ones like it, will play a significant role in prodrug evolution.

4.
ACS Omega ; 6(42): 27630-27639, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34722963

ABSTRACT

Malaria is a global health threat that requires immediate attention. Malaria is caused by the protozoan parasite Plasmodium, the most severe form of which is Plasmodium falciparum. The methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis is essential to the survival of many human pathogens, including P. falciparum, but is absent in humans, and thus shows promise as a new antimalarial drug target. The enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) catalyzes the first committed step in the MEP pathway. In addition to a divalent cation (Mg2+), the enzyme requires the substrates 1-deoxy-D-xylulose 5-phosphate (DXP) and NADPH to catalyze its reaction. We designed N-alkoxy and N-acyl fosmidomycin analogs to inhibit the activity of P. falciparum IspC in a bisubstrate manner. Enzyme assays reveal that the N-alkoxy fosmidomycin analogs have a competitive mode of inhibition relative to both the DXP- and NADPH-binding sites, confirming a bisubstrate mode of inhibition. In contrast, the N-acyl fosmidomycin analogs demonstrate competitive inhibition with respect to DXP but uncompetitive inhibition with respect to NADPH, indicating monosubstrate inhibitory activity. Our results will have a positive impact on the discovery of novel antimalarial drugs.

6.
Elife ; 102021 07 19.
Article in English | MEDLINE | ID: mdl-34279224

ABSTRACT

Carboxy ester prodrugs are widely employed to increase oral absorption and potency of phosphonate antibiotics. Prodrugging can mask problematic chemical features that prevent cellular uptake and may enable tissue-specific compound delivery. However, many carboxy ester promoieties are rapidly hydrolyzed by serum esterases, limiting their therapeutic potential. While carboxy ester-based prodrug targeting is feasible, it has seen limited use in microbes as microbial esterase-specific promoieties have not been described. Here we identify the bacterial esterases, GloB and FrmB, that activate carboxy ester prodrugs in Staphylococcus aureus. Additionally, we determine the substrate specificities for FrmB and GloB and demonstrate the structural basis of these preferences. Finally, we establish the carboxy ester substrate specificities of human and mouse sera, ultimately identifying several promoieties likely to be serum esterase-resistant and microbially labile. These studies will enable structure-guided design of antistaphylococcal promoieties and expand the range of molecules to target staphylococcal pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Prodrugs/pharmacology , Staphylococcus/drug effects , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxylesterase/metabolism , Esterases/chemistry , Esterases/metabolism , Esters/metabolism , Humans , Hydrolysis , Mice , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics
7.
ACS Infect Dis ; 6(11): 3064-3075, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33118347

ABSTRACT

With the rising prevalence of multidrug resistance, there is an urgent need to develop novel antibiotics. Many putative antibiotics demonstrate promising in vitro potency but fail in vivo due to poor drug-like qualities (e.g., serum half-life, oral absorption, solubility, and toxicity). These drug-like properties can be modified through the addition of chemical protecting groups, creating "prodrugs" that are activated prior to target inhibition. Lipophilic prodrugging techniques, including the attachment of a pivaloyloxymethyl group, have garnered attention for their ability to increase cellular permeability by masking charged residues and the relative ease of the chemical prodrugging process. Unfortunately, pivaloyloxymethyl prodrugs are rapidly activated by human sera, rendering any membrane permeability qualities absent during clinical treatment. Identification of the bacterial prodrug activation pathway(s) will allow for the development of host-stable and microbe-targeted prodrug therapies. Here, we use two zoonotic staphylococcal species, Staphylococcus schleiferi and S. pseudintermedius, to establish the mechanism of carboxy ester prodrug activation. Using a forward genetic screen, we identify a conserved locus in both species encoding the enzyme hydroxyacylglutathione hydrolase (GloB), whose loss-of-function confers resistance to carboxy ester prodrugs. We enzymatically characterize GloB and demonstrate that it is a functional glyoxalase II enzyme, which has the capacity to activate carboxy ester prodrugs. As GloB homologues are both widespread and diverse in sequence, our findings suggest that GloB may be a useful mechanism for developing species- or genus-level prodrug targeting strategies.


Subject(s)
Prodrugs , Anti-Bacterial Agents/pharmacology , Esters , Humans , Prodrugs/pharmacology , Staphylococcus
8.
PLoS Pathog ; 16(6): e1007806, 2020 06.
Article in English | MEDLINE | ID: mdl-32497104

ABSTRACT

Coagulase-positive staphylococci, which frequently colonize the mucosal surfaces of animals, also cause a spectrum of opportunistic infections including skin and soft tissue infections, urinary tract infections, pneumonia, and bacteremia. However, recent advances in bacterial identification have revealed that these common veterinary pathogens are in fact zoonoses that cause serious infections in human patients. The global spread of multidrug-resistant zoonotic staphylococci, in particular the emergence of methicillin-resistant organisms, is now a serious threat to both animal and human welfare. Accordingly, new therapeutic targets that can be exploited to combat staphylococcal infections are urgently needed. Enzymes of the methylerythritol phosphate pathway (MEP) of isoprenoid biosynthesis represent potential targets for treating zoonotic staphylococci. Here we demonstrate that fosmidomycin (FSM) inhibits the first step of the isoprenoid biosynthetic pathway catalyzed by deoxyxylulose phosphate reductoisomerase (DXR) in staphylococci. In addition, we have both enzymatically and structurally determined the mechanism by which FSM elicits its effect. Using a forward genetic screen, the glycerol-3-phosphate transporter GlpT that facilitates FSM uptake was identified in two zoonotic staphylococci, Staphylococcus schleiferi and Staphylococcus pseudintermedius. A series of lipophilic ester prodrugs (termed MEPicides) structurally related to FSM were synthesized, and data indicate that the presence of the prodrug moiety not only substantially increased potency of the inhibitors against staphylococci but also bypassed the need for GlpT-mediated cellular transport. Collectively, our data indicate that the prodrug MEPicides selectively and robustly inhibit DXR in zoonotic staphylococci, and further, that DXR represents a promising, druggable target for future development.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Prodrugs , Staphylococcal Infections , Staphylococcus , Zoonoses , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Humans , Prodrugs/chemistry , Prodrugs/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/genetics , Staphylococcal Infections/metabolism , Staphylococcus/genetics , Staphylococcus/growth & development , Zoonoses/drug therapy , Zoonoses/genetics , Zoonoses/metabolism , Zoonoses/microbiology
9.
Front Cell Infect Microbiol ; 10: 605662, 2020.
Article in English | MEDLINE | ID: mdl-33384970

ABSTRACT

Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Coenzyme A , Humans , Tuberculosis/drug therapy , Vitamins
10.
Future Med Chem ; 11(13): 1625-1643, 2019 07.
Article in English | MEDLINE | ID: mdl-31469328

ABSTRACT

Phosphonates, often used as isosteric replacements for phosphates, can provide important interactions with an enzyme. Due to their high charge at physiological pH, however, permeation into cells can be a challenge. Protecting phosphonates as prodrugs has shown promise in drug delivery. Thus, a variety of structures and cleavage/activation mechanisms exist, enabling release of the active compound. This review describes the structural diversity of these pro-moieties, relevant cleavage mechanisms and recent advances in the design of phosphonate prodrugs.


Subject(s)
Organophosphonates/chemistry , Prodrugs/chemistry , Animals , Drug Delivery Systems , Drug Design , Humans , Organophosphonates/chemical synthesis , Prodrugs/chemical synthesis
11.
J Med Chem ; 61(19): 8847-8858, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30192536

ABSTRACT

Severe malaria due to Plasmodium falciparum remains a significant global health threat. DXR, the second enzyme in the MEP pathway, plays an important role to synthesize building blocks for isoprenoids. This enzyme is a promising drug target for malaria due to its essentiality as well as its absence in humans. In this study, we designed and synthesized a series of α,ß-unsaturated analogues of fosmidomycin, a natural product that inhibits DXR in P. falciparum. All compounds were evaluated as inhibitors of P. falciparum. The most promising compound, 18a, displays on-target, potent inhibition against the growth of P. falciparum (IC50 = 13 nM) without significant inhibition of HepG2 cells (IC50 > 50 µM). 18a was also tested in a luciferase-based Plasmodium berghei mouse model of malaria and showed exceptional in vivo efficacy. Together, the data support MEPicide 18a as a novel, potent, and promising drug candidate for the treatment of malaria.


Subject(s)
Aldose-Ketose Isomerases/antagonists & inhibitors , Antimalarials/pharmacology , Fosfomycin/analogs & derivatives , Malaria, Falciparum/drug therapy , Plasmodium falciparum/growth & development , Prodrugs/pharmacology , Animals , Antimalarials/chemistry , Female , Fosfomycin/chemistry , Fosfomycin/pharmacology , Malaria, Falciparum/enzymology , Malaria, Falciparum/parasitology , Mice , Plasmodium falciparum/drug effects , Prodrugs/chemistry , Structure-Activity Relationship
12.
ACS Infect Dis ; 4(3): 278-290, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29390176

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a severe infectious disease in need of new chemotherapies especially for drug-resistant cases. To meet the urgent requirement of new TB drugs with novel modes of action, the TB research community has been validating numerous targets from several biosynthetic pathways. The methylerythritol phosphate (MEP) pathway is utilized by Mtb for the biosynthesis of isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP), the universal five-carbon building blocks of isoprenoids. While being a common biosynthetic pathway in pathogens, the MEP pathway is completely absent in humans. Due to its unique presence in pathogens as well as the essentiality of the MEP pathway in Mtb, the enzymes in this pathway are promising targets for the development of new drugs against tuberculosis. In this Review, we discuss three enzymes in the MEP pathway: 1-deoxy-d-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (IspC/DXR), and 2 C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF), which appear to be the most promising antitubercular drug targets. Structural and mechanistic features of these enzymes are reviewed, as well as selected inhibitors that show promise as antitubercular agents.


Subject(s)
Antitubercular Agents/isolation & purification , Biosynthetic Pathways/genetics , Erythritol/analogs & derivatives , Erythritol/metabolism , Mycobacterium tuberculosis/metabolism , Phosphates/metabolism , Antitubercular Agents/pharmacology , Hemiterpenes , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Organophosphorus Compounds , Tuberculosis/drug therapy
13.
Anal Biochem ; 542: 63-75, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29180070

ABSTRACT

The rise of antibacterial resistance among human pathogens represents a problem that could change the landscape of healthcare unless new antibiotics are developed. The methyl erythritol phosphate (MEP) pathway represents an attractive series of targets for novel antibiotic design, considering each enzyme of the pathway is both essential and has no human homologs. Here we describe a pilot scale high-throughput screening (HTS) campaign against the first and second committed steps in the pathway, catalyzed by DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD), using compounds present in the commercially available LOPAC1280 library as well as in an in-house natural product extract library. Hit compounds were characterized to deduce their mechanism of inhibition; most function through aggregation. The HTS workflow outlined here is useful for quickly screening a chemical library, while effectively identifying false positive compounds associated with assay constraints and aggregation.


Subject(s)
Aldose-Ketose Isomerases/antagonists & inhibitors , Anti-Bacterial Agents/analysis , Enzyme Inhibitors/analysis , High-Throughput Screening Assays , Nucleotidyltransferases/antagonists & inhibitors , Aldose-Ketose Isomerases/metabolism , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Molecular Structure , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Nucleotidyltransferases/metabolism , Recombinant Proteins/metabolism , Yersinia pestis/drug effects , Yersinia pestis/enzymology
14.
Bioorg Med Chem Lett ; 27(18): 4426-4430, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28827112

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) synthetase catalyzes the last step in NAD+ biosynthesis. Depletion of NAD+ is bactericidal for both active and dormant Mycobacterium tuberculosis (Mtb). By inhibiting NAD+ synthetase (NadE) from Mtb, we expect to eliminate NAD+ production which will result in cell death in both growing and nonreplicating Mtb. NadE inhibitors have been investigated against various pathogens, but few have been tested against Mtb. Here, we report on the expansion of a series of urea-sulfonamides, previously reported by Brouillette et al. Guided by docking studies, substituents on a terminal phenyl ring were varied to understand the structure-activity-relationships of substituents on this position. Compounds were tested as inhibitors of both recombinant Mtb NadE and Mtb whole cells. While the parent compound displayed very weak inhibition against Mtb NadE (IC50=1000µM), we observed up to a 10-fold enhancement in potency after optimization. Replacement of the 3,4-dichloro group on the phenyl ring of the parent compound with 4-nitro yielded 4f, the most potent compound of the series with an IC50 value of 90µM against Mtb NadE. Our modeling results show that these urea-sulfonamides potentially bind to the intramolecular ammonia tunnel, which transports ammonia from the glutaminase domain to the active site of the enzyme. This hypothesis is supported by data showing that, even when treated with potent inhibitors, NadE catalysis is restored when treated with exogenous ammonia. Most of these compounds also inhibited Mtb cell growth with MIC values of 19-100µg/mL. These results improve our understanding of the SAR of the urea-sulfonamides, their mechanism of binding to the enzyme, and of Mtb NadE as a potential antitubercular drug target.


Subject(s)
Amide Synthases/antagonists & inhibitors , Antitubercular Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Amide Synthases/metabolism , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Structure-Activity Relationship
15.
Sci Rep ; 7(1): 8400, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827774

ABSTRACT

The emergence of Plasmodium falciparum resistant to frontline therapeutics has prompted efforts to identify and validate agents with novel mechanisms of action. MEPicides represent a new class of antimalarials that inhibit enzymes of the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, including the clinically validated target, deoxyxylulose phosphate reductoisomerase (Dxr). Here we describe RCB-185, a lipophilic prodrug with nanomolar activity against asexual parasites. Growth of P. falciparum treated with RCB-185 was rescued by isoprenoid precursor supplementation, and treatment substantially reduced metabolite levels downstream of the Dxr enzyme. In addition, parasites that produced higher levels of the Dxr substrate were resistant to RCB-185. Notably, environmental isolates resistant to current therapies remained sensitive to RCB-185, the compound effectively treated sexually-committed parasites, and was both safe and efficacious in malaria-infected mice. Collectively, our data demonstrate that RCB-185 potently and selectively inhibits Dxr in P. falciparum, and represents a promising lead compound for further drug development.


Subject(s)
Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Plasmodium falciparum/drug effects , Prodrugs/pharmacology , Terpenes/antagonists & inhibitors , Aldose-Ketose Isomerases/antagonists & inhibitors , Animals , Antimalarials/administration & dosage , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Malaria, Falciparum/drug therapy , Mice , Plasmodium falciparum/growth & development , Prodrugs/administration & dosage , Treatment Outcome
16.
ACS Infect Dis ; 2(12): 923-935, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27676224

ABSTRACT

Despite continued research efforts, the threat of drug resistance from a variety of bacteria continues to plague clinical communities. Discovery and validation of novel biochemical targets will facilitate development of new drugs to combat these organisms. The methylerythritol phosphate (MEP) pathway to make isoprene units is a biosynthetic pathway essential to many bacteria. We and others have explored inhibitors of the MEP pathway as novel antibacterial agents. Mycobacterium tuberculosis, the causative agent of tuberculosis, and Yersinia pestis, resulting in the plague or "black death", both rely on the MEP pathway for isoprene production. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (Dxr) catalyzes the first committed step in the MEP pathway. We examined two series of Dxr inhibitors based on the parent structure of the retrohydroxamate natural product FR900098. The compounds contain either an extended N-acyl or O-linked alkyl/aryl group and are designed to act as bisubstrate inhibitors of the enzyme. While nearly all of the compounds inhibited both Mtb and Yp Dxr to some extent, compounds generally displayed more potent inhibition against the Yp homologue, with the best analogs displaying nanomolar IC50 values. In bacterial growth inhibition assays, the phosphonic acids generally resulted in poor antibacterial activity, likely a reflection of inadequate permeability. Accordingly, diethyl and dipivaloyloxymethyl (POM) prodrug esters of these compounds were made. While the added lipophilicity did not enhance Yersinia activity, the compounds showed significantly improved antitubercular activities. The most potent compounds have Mtb MIC values of 3-12 µg/mL. Taken together, we have uncovered two series of analogs that potently inhibit Dxr homologues from Mtb and Yp. These inhibitors of the MEP pathway, termed MEPicides, serve as leads for future analog development.


Subject(s)
Aldose-Ketose Isomerases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Yersinia pestis/drug effects , Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Structure-Activity Relationship , Yersinia pestis/enzymology , Yersinia pestis/genetics , Yersinia pestis/metabolism
17.
ChemMedChem ; 11(18): 2024-36, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27487410

ABSTRACT

Blocking the 2-C-methyl-d-erythrithol-4-phosphate pathway for isoprenoid biosynthesis offers new ways to inhibit the growth of Plasmodium spp. Fosmidomycin [(3-(N-hydroxyformamido)propyl)phosphonic acid, 1] and its acetyl homologue FR-900098 [(3-(N-hydroxyacetamido)propyl)phosphonic acid, 2] potently inhibit 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in this biosynthetic pathway. Arylpropyl substituents were introduced at the ß-position of the hydroxamate analogue of 2 to study changes in lipophilicity, as well as electronic and steric properties. The potency of several new compounds on the P. falciparum enzyme approaches that of 1 and 2. Activities against the enzyme and parasite correlate well, supporting the mode of action. Seven X-ray structures show that all of the new arylpropyl substituents displace a key tryptophan residue of the active-site flap, which had made favorable interactions with 1 and 2. Plasticity of the flap allows substituents to be accommodated in many ways; in most cases, the flap is largely disordered. Compounds can be separated into two classes based on whether the substituent on the aromatic ring is at the meta or para position. Generally, meta-substituted compounds are better inhibitors, and in both classes, smaller size is linked to better potency.


Subject(s)
Aldose-Ketose Isomerases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Fosfomycin/analogs & derivatives , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Aldose-Ketose Isomerases/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Fosfomycin/chemical synthesis , Fosfomycin/chemistry , Fosfomycin/pharmacology , Models, Molecular , Molecular Structure , Structure-Activity Relationship
18.
J Med Chem ; 58(7): 2988-3001, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25781377

ABSTRACT

Blocking the 2-C-methyl-d-erythrithol-4-phosphate (MEP) pathway for isoprenoid biosynthesis offers interesting prospects for inhibiting Plasmodium or Mycobacterium spp. growth. Fosmidomycin (1) and its homologue FR900098 (2) potently inhibit 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in this pathway. Here we introduced aryl or aralkyl substituents at the ß-position of the hydroxamate analogue of 2. While direct addition of a ß-aryl moiety resulted in poor inhibition, longer linkers between the carbon backbone and the phenyl ring were generally associated with better binding to the enzymes. X-ray structures of the parasite Dxr-inhibitor complexes show that the "longer" compounds generate a substantially different flap structure, in which a key tryptophan residue is displaced, and the aromatic group of the ligand lies between the tryptophan and the hydroxamate's methyl group. Although the most promising new Dxr inhibitors lack activity against Escherichia coli and Mycobacterium smegmatis, they proved to be highly potent inhibitors of Plasmodium falciparum in vitro growth.


Subject(s)
Aldose-Ketose Isomerases/antagonists & inhibitors , Aldose-Ketose Isomerases/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fosfomycin/analogs & derivatives , Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Antimalarials/chemistry , Antimalarials/pharmacology , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Escherichia coli/drug effects , Fosfomycin/chemistry , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Models, Molecular , Molecular Targeted Therapy , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Plasmodium falciparum/drug effects , Protein Conformation , Structure-Activity Relationship
19.
PLoS One ; 9(8): e106243, 2014.
Article in English | MEDLINE | ID: mdl-25171339

ABSTRACT

The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KMDXP = 252 µM and KMNADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development.


Subject(s)
Aldose-Ketose Isomerases/chemistry , Bacterial Proteins/chemistry , Yersinia pestis/enzymology , Aldose-Ketose Isomerases/genetics , Allosteric Regulation , Bacterial Proteins/genetics , Catalysis , Erythritol/analogs & derivatives , Erythritol/biosynthesis , Erythritol/chemistry , Fosfomycin/analogs & derivatives , Fosfomycin/chemistry , Kinetics , Yersinia pestis/genetics
20.
J Ethnopharmacol ; 155(1): 524-32, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24911338

ABSTRACT

ETHNOPHARMACOLOGICAL SIGNIFICANCE: Nigerian herbalists possess indigenous ethnomedicinal recipes for the management of tuberculosis and related ailments. A collaborative preliminary modern scientific evaluation of the efficacy of some Nigerian ethnomedicines used by traditional medicine practitioners (TMPs) in the management of tuberculosis and related ailments has been carried out. MATERIALS AND METHODS: Ethnomedicinal recipes (ETMs) were collected from TMPs from locations in various ecological zones of Nigeria under a collaborative understanding. The aqueous methanolic extracts of the ETMs were screened against Mycobacterium bovis, BCG and Mycobacterium tuberculosis strain H37Rv using the broth microdilution method. RESULTS: Extracts of ETMs screened against BCG showed 69% activity against the organism. The activities varied from weak, ≤2500 µg/mL to highly active, 33 µg/mL 64% of the extracts were active against Mycobacterium tuberculosis The activities of the extracts against Mycobacterium tuberculosis varied from weak, ≤2500 µg/mL to highly active, 128 µg/mL. There was 77% agreement in results obtained using BCG or Mycobacterium tuberculosis as test organisms. CONCLUSION: The results show clear evidence for the efficacy of the majority of indigenous Nigerian herbal recipes in the ethnomedicinal management of tuberculosis and related ailments. BCG may be effectively used, to a great extent, as the organism for screening for potential anti-Mycobacterium tuberculosis agents. A set of prioritization criteria for the selection of plants for initial further studies for the purpose of antituberculosis drug discovery research is proposed.


Subject(s)
Mycobacterium bovis/drug effects , Mycobacterium tuberculosis/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Adult , Antitubercular Agents/isolation & purification , Antitubercular Agents/pharmacology , Data Collection , Ethnopharmacology , Female , Humans , Male , Medicine, African Traditional , Microbial Sensitivity Tests , Nigeria
SELECTION OF CITATIONS
SEARCH DETAIL