Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Thrombolysis ; 52(4): 1117-1128, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33978907

ABSTRACT

The impact of antithrombin III activity (AT-III) on prophylactic enoxaparin anti-factor Xa concentration (anti-Xa) is unknown in high-risk trauma patients. So too is the optimal anti-Xa-adjusted enoxaparin dosage. This prospective, randomized, pilot study sought to explore the association between AT-III and anti-Xa goal attainment and to preliminarily evaluate two enoxaparin dosage adjustment strategies in patients with subprophylactic anti-Xa. Adult trauma patients with Risk Assessment Profile (RAP) ≥ 5 prescribed enoxaparin 30 mg subcutaneously every 12 h were eligible. AT-III and anti-Xa were drawn 8 h after the third enoxaparin dose and compared between patients with anti-Xa ≥ 0.1 IU/mL (goal; control group) or anti-Xa < 0.1 IU/mL (subprophylactic; intervention group). The primary outcome was difference in baseline AT-III. Subsequently, intervention group patients underwent 1:1 randomization to either enoxaparin 40 mg every 12 h (up to 50 mg every 12 h if repeat anti-Xa < 0.1 IU/mL) (enox12) or enoxaparin 30 mg every 8 h (enox8) with repeat anti-Xa assessments. The proportion of patients achieving goal anti-Xa after dosage adjustment were compared. A total of 103 patients were included. Anti-Xa was subprophylactic in 50.5%. Baseline AT-III (median [IQR]) was 87% [80-98%] in control patients versus 82% [71-96%] in intervention patients (p = 0.092). Goal trough anti-Xa was achieved on first assessment in 38.1% enox12 versus 50% enox8 patients (p = 0.67), 84.6% versus 53.3% on second assessment (p = 0.11), and 100% vs. 54.5% on third trough assessment (p = 0.045). AT-III activity did not differ between high-risk trauma patients with goal and subprophylactic enoxaparin anti-Xa concentrations, although future investigation is warranted. Enoxaparin dose adjustment rather than frequency adjustment may be associated with a higher proportion of patients achieving goal anti-Xa over time.


Subject(s)
Enoxaparin/therapeutic use , Venous Thromboembolism , Adult , Anticoagulants/therapeutic use , Antithrombin III , Enoxaparin/classification , Humans , Pilot Projects , Prospective Studies , Venous Thromboembolism/drug therapy , Venous Thromboembolism/prevention & control
2.
Dev Biol ; 410(2): 150-163, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26764128

ABSTRACT

Lens epithelial cells express many receptor tyrosine kinases (RTKs) that stimulate PI3K-AKT and RAS-RAF-MEK-ERK intracellular signaling pathways. These pathways ultimately activate the phosphorylation of key cellular transcription factors and other proteins that control proliferation, survival, metabolism, and differentiation in virtually all cells. Among RTKs in the lens, only stimulation of fibroblast growth factor receptors (FGFRs) elicits a lens epithelial cell to fiber cell differentiation response in mammals. Moreover, although the lens expresses three different Fgfr genes, the isolated removal of Fgfr2 at the lens placode stage inhibits both lens cell survival and fiber cell differentiation. Phosphatase and tensin homolog (PTEN), commonly known as a tumor suppressor, inhibits ERK and AKT activation and initiates both apoptotic pathways, and cell cycle arrest. Here, we show that the combined deletion of Fgfr2 and Pten rescues the cell death phenotype associated with Fgfr2 loss alone. Additionally, Pten removal increased AKT and ERK activation, above the levels of controls, in the presence or absence of Fgfr2. However, isolated deletion of Pten failed to stimulate ectopic fiber cell differentiation, and the combined deletion of Pten and Fgfr2 failed to restore differentiation-specific Aquaporin0 and DnaseIIß expression in the lens fiber cells.


Subject(s)
Cell Survival/physiology , PTEN Phosphohydrolase/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Lens, Crystalline/embryology , MAP Kinase Signaling System , Mice , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/physiology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/physiology , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...