Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 406, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958764

ABSTRACT

The proliferation and dissemination of antimicrobial-resistant bacteria is an increasingly global challenge and is attributed mainly to the excessive or improper use of antibiotics. Currently, the gold-standard phenotypic methodology for detecting resistant strains is agar plating, which is a time-consuming process that involves multiple subculturing steps. Genotypic analysis techniques are fast, but they require pure starting samples and cannot differentiate between viable and non-viable organisms. Thus, there is a need to develop a better method to identify and prevent the spread of antimicrobial resistance. This work presents a novel method for detecting and identifying antibiotic-resistant strains by combining a cell sorter for bacterial detection and an elastic-light-scattering method for bacterial classification. The cell sorter was equipped with safety mechanisms for handling pathogenic organisms and enabled precise placement of individual bacteria onto an agar plate. The patterning was performed on an antibiotic-gradient plate, where the growth of colonies in sections with high antibiotic concentrations confirmed the presence of a resistant strain. The antibiotic-gradient plate was also tested with an elastic-light-scattering device where each colony's unique colony scatter pattern was recorded and classified using machine learning for rapid identification of bacteria. Sorting and patterning bacteria on an antibiotic-gradient plate using a cell sorter reduced the number of subculturing steps and allowed direct qualitative binary detection of resistant strains. Elastic-light-scattering technology is a rapid, label-free, and non-destructive method that permits instantaneous classification of pathogenic strains based on the unique bacterial colony scatter pattern. KEY POINTS: • Individual bacteria cells are placed on gradient agar plates by a cell sorter • Laser-light scatter patterns are used to recognize antibiotic-resistant organisms • Scatter patterns formed by colonies correspond to AMR-associated phenotypes.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Phenotype , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Flow Cytometry/methods , Microbial Sensitivity Tests/methods , Light
2.
Sensors (Basel) ; 23(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36850732

ABSTRACT

Real-time detection and disinfection of foodborne pathogens are important for preventing foodborne outbreaks and for maintaining a safe environment for consumers. There are numerous methods for the disinfection of hazardous organisms, including heat treatment, chemical reaction, filtration, and irradiation. This report evaluated a portable instrument to validate its simultaneous detection and disinfection capability in typical laboratory situations. In this challenging study, three gram-negative and two gram-positive microorganisms were used. For the detection of contamination, inoculations of various concentrations were dispensed on three different surface types to estimate the performance for minimum-detectable cell concentration. Inoculations higher than 103~104 CFU/mm2 and 0.15 mm of detectable contaminant size were estimated to generate a sufficient level of fluorescence signal. The evaluation of disinfection efficacy was conducted on three distinct types of surfaces, with the energy density of UVC light (275-nm) ranging from 4.5 to 22.5 mJ/cm2 and the exposure time varying from 1 to 5 s. The study determined the optimal energy dose for each of the microorganisms species. In addition, surface characteristics may also be an important factor that results in different inactivation efficacy. These results demonstrate that the proposed portable device could serve as an in-field detection and disinfection unit in various environments, and provide a more efficient and user-friendly way of performing disinfection on large surface areas.


Subject(s)
Disinfection , Filtration , Physical Phenomena , Disease Outbreaks , Drug Contamination
3.
Sensors (Basel) ; 22(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35408260

ABSTRACT

We present a smartphone-based bacterial colony phenotyping instrument using a reflective elastic light scattering (ELS) pattern and the resolving power of the new instrument. The reflectance-type device can acquire ELS patterns of colonies on highly opaque media as well as optically dense colonies. The novel instrument was built using a smartphone interface and a 532 nm diode laser, and these essential optical components made it a cost-effective and portable device. When a coherent and collimated light source illuminated a bacterial colony, a reflective ELS pattern was created on the screen and captured by the smartphone camera. The collected patterns whose shapes were determined by the colony morphology were then processed and analyzed to extract distinctive features for bacterial identification. For validation purposes, the reflective ELS patterns of five bacteria grown on opaque growth media were measured with the proposed instrument and utilized for the classification. Cross-validation was performed to evaluate the classification, and the result showed an accuracy above 94% for differentiating colonies of E. coli, K. pneumoniae, L. innocua, S. enteritidis, and S. aureus.


Subject(s)
Escherichia coli , Optical Devices , Bacteria , Culture Media , Smartphone , Staphylococcus aureus
4.
Physiol Rep ; 10(5): e15161, 2022 03.
Article in English | MEDLINE | ID: mdl-35238481

ABSTRACT

Circulating albumin is expected to play a significant role in the trafficking of plasma free fatty acids (FFA) between tissues, such as FFA transfer from adipose tissue to the liver. However, it was not yet known how disrupting FFA binding to albumin in circulation would alter lipid metabolism and any resulting impacts upon control of glycemia. To improve understanding of metabolic control, we aimed to determine whether lack of serum albumin would decrease plasma FFA, hepatic lipid storage, whole body substrate oxidation, and glucose metabolism. Male and female homozygous albumin knockout mice and C57BL/6J wild type controls, each on a standard diet containing a moderate fat content, were studied at 6-8 weeks of age. Indirect calorimetry, glucose tolerance testing, insulin tolerance testing, exercise performance, plasma proteome, and tissue analyses were performed. In both sexes of albumin knockout mice compared to the wild type mice, significant reductions (p < 0.05) were observed for plasma FFA concentration, hepatic triacylglycerol and diacylglycerol content, blood glucose during the glucose tolerance test, and blood glucose during the insulin tolerance test. Albumin deficiency did not reduce whole body fat oxidation over a 24-h period and did not alter exercise performance in an incremental treadmill test. The system-level phenotypic changes in lipid and glucose metabolism were accompanied by reduced hepatic perilipin-2 expression (p < 0.05), as well as increased expression of adiponectin (p < 0.05) and glucose transporter-4 (p < 0.05) in adipose tissue. The results indicate an important role of albumin and plasma FFA concentration in lipid metabolism and glucoregulation.


Subject(s)
Fatty Acids, Nonesterified , Insulin Resistance , Albumins/metabolism , Animals , Blood Glucose/metabolism , Female , Insulin , Lipid Metabolism/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...