Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 617(7959): 105-110, 2023 05.
Article in English | MEDLINE | ID: mdl-37020019

ABSTRACT

Rates of ice-sheet grounding-line retreat can be quantified from the spacing of corrugation ridges on deglaciated regions of the seafloor1,2, providing a long-term context for the approximately 50-year satellite record of ice-sheet change3-5. However, the few existing examples of these landforms are restricted to small areas of the seafloor, limiting our understanding of future rates of grounding-line retreat and, hence, sea-level rise. Here we use bathymetric data to map more than 7,600 corrugation ridges across 30,000 km2 of the mid-Norwegian shelf. The spacing of the ridges shows that pulses of rapid grounding-line retreat, at rates ranging from 55 to 610 m day-1, occurred across low-gradient (±1°) ice-sheet beds during the last deglaciation. These values far exceed all previously reported rates of grounding-line retreat across the satellite3,4,6,7 and marine-geological1,2 records. The highest retreat rates were measured across the flattest areas of the former bed, suggesting that near-instantaneous ice-sheet ungrounding and retreat can occur where the grounding line approaches full buoyancy. Hydrostatic principles show that pulses of similarly rapid grounding-line retreat could occur across low-gradient Antarctic ice-sheet beds even under present-day climatic forcing. Ultimately, our results highlight the often-overlooked vulnerability of flat-bedded areas of ice sheets to pulses of extremely rapid, buoyancy-driven retreat.

SELECTION OF CITATIONS
SEARCH DETAIL
...