Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Blood Cancer J ; 3: e109, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-23584399

ABSTRACT

Owing to the prevalence of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs), its constitutive activity, and ability to recapitulate the MPN phenotype in mouse models, JAK2V617F kinase is an attractive therapeutic target. We report the discovery and initial characterization of the orally bioavailable imidazopyridazine, LY2784544, a potent, selective and ATP-competitive inhibitor of janus kinase 2 (JAK2) tyrosine kinase. LY2784544 was discovered and characterized using a JAK2-inhibition screening assay in tandem with biochemical and cell-based assays. LY2784544 in vitro selectivity for JAK2 was found to be equal or superior to known JAK2 inhibitors. Further studies showed that LY2784544 effectively inhibited JAK2V617F-driven signaling and cell proliferation in Ba/F3 cells (IC50=20 and 55 nM, respectively). In comparison, LY2784544 was much less potent at inhibiting interleukin-3-stimulated wild-type JAK2-mediated signaling and cell proliferation (IC50=1183 and 1309 nM, respectively). In vivo, LY2784544 effectively inhibited STAT5 phosphorylation in Ba/F3-JAK2V617F-GFP (green fluorescent protein) ascitic tumor cells (TED50=12.7 mg/kg) and significantly reduced (P<0.05) Ba/F3-JAK2V617F-GFP tumor burden in the JAK2V617F-induced MPN model (TED50=13.7 mg/kg, twice daily). In contrast, LY2784544 showed no effect on erythroid progenitors, reticulocytes or platelets. These data suggest that LY2784544 has potential for development as a targeted agent against JAK2V617F and may have properties that allow suppression of JAK2V617F-induced MPN pathogenesis while minimizing effects on hematopoietic progenitor cells.

2.
Am J Physiol ; 269(3 Pt 1): L351-7, 1995 Sep.
Article in English | MEDLINE | ID: mdl-7573469

ABSTRACT

To investigate the mechanism of hypoxic pulmonary vasodilation we measured isometric tension in rings from ferret third- to fifth-generation intrapulmonary arteries mounted in organ baths (37 degrees C, 28% O2-5% CO2). After precontraction with phenylephrine (PE), hypoxia caused a brief transient vasoconstriction followed by marked vasodilation. Endothelial denudation did not affect the steady-state response. In vessels without endothelium, inhibition of cyclooxygenase and nitric oxide synthase had no effect on the response to hypoxia. Inhibition of ATP-dependent K+ channels (KATP) with glibenclamide, linogliride, or tolbutamide had no effect on normoxic tone before PE or the vasoconstrictor response to PE but inhibited hypoxic vasodilation. Inhibition of Ca(2+)-activated K+ (KCa) channels with charybdotoxin potentiated the vasoconstrictor response to PE but had no effect on hypoxic vasodilation. The nonspecific K(+)-channel inhibitor tetraethyl-ammonium (TEA) potentiated the response to PE and inhibited hypoxic vasodilation. Glibenclamide plus TEA inhibited hypoxic vasodilation more than either agent alone, suggesting that TEA inhibited the KATP-channel independent vasodilation. These results suggest that in isolated ferret pulmonary arteries hypoxia causes vasodilation partially by activating smooth muscle KATP channels. Activation of a TEA-sensitive channel that is not a KATP or KCa channel may also contribute to hypoxic vasodilation.


Subject(s)
Hypoxia/physiopathology , Pulmonary Artery/physiopathology , Vasodilation , Animals , Benzopyrans/pharmacology , Cromakalim , Cyclooxygenase Inhibitors/pharmacology , Ferrets , Male , Nitric Oxide Synthase/antagonists & inhibitors , Potassium Channel Blockers , Potassium Channels/drug effects , Potassium Channels/metabolism , Pyrroles/pharmacology , Vasomotor System/drug effects , Vasomotor System/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...