Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 80: 210-25, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27181451

ABSTRACT

Methoxyflurane (MOF) a haloether, is an inhalation analgesic agent for emergency relief of pain by self administration in conscious patients with trauma and associated pain. It is administered under supervision of personnel trained in its use. As a consequence of supervised use, intermittent occupational exposure can occur. An occupational exposure limit has not been established for methoxyflurane. Human clinical and toxicity data have been reviewed and used to derive an occupational exposure limit (referred to as a maximum exposure level, MEL) according to modern principles. The data set for methoxyflurane is complex given its historical use as anaesthetic. Distinguishing clinical investigations of adverse health effects following high and prolonged exposure during anaesthesia to assess relatively low and intermittent exposure during occupational exposure requires an evidence based approach to the toxicity assessment and determination of a critical effect and point of departure. The principal target organs are the kidney and the central nervous system and there have been rare reports of hepatotoxicity, too. Methoxyflurane is not genotoxic based on in vitro bacterial mutation and in vivo micronucleus tests and it is not classifiable (IARC) as a carcinogenic hazard to humans. The critical effect chosen for development of a MEL is kidney toxicity. The point of departure (POD) was derived from the concentration response relationship for kidney toxicity using the benchmark dose method. A MEL of 15 ppm (expressed as an 8 h time weighted average (TWA)) was derived. The derived MEL is at least 50 times higher than the mean observed TWA (0.23 ppm) for ambulance workers and medical staff involved in supervising use of Penthrox. In typical treatment environments (ambulances and treatment rooms) that meet ventilation requirements the derived MEL is at least 10 times higher than the modelled TWA (1.5 ppm or less) and the estimated short term peak concentrations are within the MEL. The odour threshold for MOF of 0.13-0.19 ppm indicates that the odour is detectable well below the MEL. Given the above considerations the proposed MEL is health protective.


Subject(s)
Analgesics/adverse effects , Anesthetics, Inhalation/adverse effects , Health Personnel , Inhalation Exposure/adverse effects , Methoxyflurane/adverse effects , Occupational Exposure/adverse effects , Occupational Health , Administration, Inhalation , Analgesics/administration & dosage , Analgesics/pharmacokinetics , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacokinetics , Animals , Benchmarking , Dose-Response Relationship, Drug , Environment, Controlled , Environmental Monitoring/methods , Humans , Methoxyflurane/administration & dosage , Methoxyflurane/pharmacokinetics , Models, Statistical , Risk Assessment , Toxicity Tests , Toxicokinetics
2.
Biochim Biophys Acta ; 1819(8): 855-62, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22513242

ABSTRACT

The promoters of genes which regulate entry into and progress through mitosis are typically induced maximally in G2 by transcription factors that include B-Myb and FoxM1. As FoxM1 gene transcription is a target of B-Myb, we investigated in this study how these transcription factors functionally interact to regulate these G2/M genes. Using a 3T3 cell line containing floxed B-myb alleles (B-myb(F/F)) that could be conditionally deleted by Cre recombinase, we confirmed that B-myb knockout caused both decreased mRNA expression of several G2/M genes, including FoxM1, and delayed entry into mitosis. Although FoxM1 protein expression was actually unaffected by B-myb knockout when quiescent B-myb(F/F) 3T3 cells re-entered the cell cycle upon serum-stimulation, chromatin immunoprecipitation revealed that FoxM1 binding to G2/M promoters was substantially reduced. FoxM1 transcriptional activity requires sequential phosphorylation by Cyclin-dependent kinases and Plk1, which are B-Myb target genes, and we found that phosphorylation at Plk1-specific sites was somewhat reduced upon B-myb knockout. Neither this effect nor nuclear accumulation of FoxM1, which was unaffected by B-myb knockout, was sufficient to account for the dependence on B-Myb for FoxM1 promoter binding, however. More significantly, assays using paired Birc5 (survivin) promoter-luciferase reporters with either wild-type or mutated Myb binding sites showed that FoxM1 was unable to bind and activate the promoter in the absence of B-Myb binding. Our data suggest that B-Myb is required as a pioneer factor to enable FoxM1 binding to G2/M gene promoters and explains how these transcription factors may collaborate to induce mitosis.


Subject(s)
Cell Cycle Proteins/genetics , Forkhead Transcription Factors/genetics , G2 Phase Cell Cycle Checkpoints/genetics , Mitosis/genetics , Trans-Activators/genetics , 3T3 Cells , Animals , Binding Sites , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Forkhead Box Protein M1 , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Mice , Mice, Knockout , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation , Polo-Like Kinase 1
3.
Syst Biol ; 55(1): 122-37, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16507529

ABSTRACT

Australasian marsupials include three major radiations, the insectivorous/carnivorous Dasyuromorphia, the omnivorous bandicoots (Peramelemorphia), and the largely herbivorous diprotodontians. Morphologists have generally considered the bandicoots and diprotodontians to be closely related, most prominently because they are both syndactylous (with the 2nd and 3rd pedal digits being fused). Molecular studies have been unable to confirm or reject this Syndactyla hypothesis. Here we present new mitochondrial (mt) genomes from a spiny bandicoot (Echymipera rufescens) and two dasyurids, a fat-tailed dunnart (Sminthopsis crassicaudata) and a northern quoll (Dasyurus hallucatus). By comparing trees derived from pairwise base-frequency differences between taxa with standard (absolute, uncorrected) distance trees, we infer that composition bias among mt protein-coding and RNA sequences is sufficient to mislead tree reconstruction. This can explain incongruence between trees obtained from mt and nuclear data sets. However, after excluding major sources of compositional heterogeneity, both the "reduced-bias" mt and nuclear data sets clearly favor a bandicoot plus dasyuromorphian association, as well as a grouping of kangaroos and possums (Phalangeriformes) among diprotodontians. Notably, alternatives to these groupings could only be confidently rejected by combining the mt and nuclear data. Elsewhere on the tree, Dromiciops appears to be sister to the monophyletic Australasian marsupials, whereas the placement of the marsupial mole (Notoryctes) remains problematic. More generally, we contend that it is desirable to combine mt genome and nuclear sequences for inferring vertebrate phylogeny, but as separately modeled process partitions. This strategy depends on detecting and excluding (or accounting for) major sources of non-historical signal, such as from compositional non-stationarity. [Base composition; combined data; marsupial; mitochondrial genome; phylogeny.].


Subject(s)
Marsupialia/classification , Animals , Australasia , Biological Evolution , Classification/methods , DNA, Mitochondrial/chemistry , DNA, Ribosomal/chemistry , Marsupialia/genetics , Phylogeny , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...