Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33741729

ABSTRACT

BACKGROUND: Multiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported. METHODS: This study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment. RESULTS: Using the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes. CONCLUSION: These data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.


Subject(s)
Bone Marrow/immunology , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Multiple Myeloma/therapy , Oncolytic Virotherapy , Oncolytic Viruses/immunology , Reoviridae/immunology , Spleen/immunology , Tumor Microenvironment/immunology , Animals , Bone Marrow/virology , CD8-Positive T-Lymphocytes/virology , Cell Line, Tumor , Coculture Techniques , Cytokines/immunology , Cytotoxicity, Immunologic , Female , Humans , Killer Cells, Natural/virology , Male , Mice, Inbred C57BL , Multiple Myeloma/immunology , Multiple Myeloma/virology , Oncolytic Viruses/pathogenicity , Reoviridae/pathogenicity , Spleen/virology , Tumor Escape
2.
J Bone Miner Res ; 34(5): 783-796, 2019 05.
Article in English | MEDLINE | ID: mdl-30320927

ABSTRACT

Multiple myeloma is a plasma cell malignancy, which develops in the bone marrow and frequently leads to severe bone destruction. Current antiresorptive therapies to treat the bone disease do little to repair damaged bone; therefore, new treatment strategies incorporating bone anabolic therapies are urgently required. We hypothesized that combination therapy using the standard of care antiresorptive zoledronic acid (Zol) with a bone anabolic (anti-TGFß/1D11) would be more effective at treating myeloma-induced bone disease than Zol therapy alone. JJN3 myeloma-bearing mice (n = 8/group) treated with combined Zol and 1D11 resulted in a 48% increase (p ≤ 0.001) in trabecular bone volume (BV/TV) compared with Zol alone and a 65% increase (p ≤ 0.0001) compared with 1D11 alone. Our most significant finding was the substantial repair of U266-induced osteolytic bone lesions with combination therapy (n = 8/group), which resulted in a significant reduction in lesion area compared with vehicle (p ≤ 0.01) or Zol alone (p ≤ 0.01). These results demonstrate that combined antiresorptive and bone anabolic therapy is significantly more effective at preventing myeloma-induced bone disease than Zol alone. Furthermore, we demonstrate that combined therapy is able to repair established myelomatous bone lesions. This is a highly translational strategy that could significantly improve bone outcomes and quality of life for patients with myeloma. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Subject(s)
Antibodies, Monoclonal/pharmacology , Multiple Myeloma , Neoplasms, Experimental , Osteolysis , Zoledronic Acid/pharmacology , Animals , Cell Line, Tumor , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Osteolysis/drug therapy , Osteolysis/metabolism , Osteolysis/pathology , Transforming Growth Factor beta/antagonists & inhibitors , Xenograft Model Antitumor Assays
3.
PLoS One ; 13(6): e0199517, 2018.
Article in English | MEDLINE | ID: mdl-29924867

ABSTRACT

The receptor tyrosine kinase c-Met, its ligand HGF, and components of the downstream signalling pathway, have all been implicated in the pathogenesis of myeloma, both as modulators of plasma cell proliferation and as agents driving osteoclast differentiation and osteoblast inhibition thus, all these contribute substantially to the bone destruction typically caused by myeloma. Patients with elevated levels of HGF have a poor prognosis, therefore, targeting these entities in such patients may be of substantial benefit. We hypothesized that ARQ-197 (Tivantinib), a small molecule c-Met inhibitor, would reduce myeloma cell growth and prevent myeloma-associated bone disease in a murine model. In vitro we assessed the effects of ARQ-197 on myeloma cell proliferation, cytotoxicity and c-Met protein expression in human myeloma cell lines. In vivo we injected NOD/SCID-γ mice with PBS (non-tumour bearing) or JJN3 cells and treated them with either ARQ-197 or vehicle. In vitro exposure of JJN3, U266 or NCI-H929 cells to ARQ-197 resulted in a significant inhibition of cell proliferation and an induction of cell death by necrosis, probably caused by significantly reduced levels of phosphorylated c-Met. In vivo ARQ-197 treatment of JJN3 tumour-bearing mice resulted in a significant reduction in tumour burden, tumour cell proliferation, bone lesion number, trabecular bone loss and prevented significant decreases in the bone formation rate on the cortico-endosteal bone surface compared to the vehicle group. However, no significant differences on bone parameters were observed in non-tumour mice treated with ARQ-197 compared to vehicle, implying that in tumour-bearing mice the effects of ARQ-197 on bone cells was indirect. In summary, these res ults suggest that ARQ-197 could be a promising therapeutic in myeloma patients, leading to both a reduction in tumour burden and an inhibition of myeloma-induced bone disease.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Diseases/prevention & control , Multiple Myeloma/drug therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrrolidinones/pharmacology , Quinolines/pharmacology , Animals , Bone Diseases/diagnostic imaging , Bone Diseases/metabolism , Bone Diseases/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans , Mice, Inbred NOD , Mice, SCID , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Neoplasm Transplantation , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/pathology , Proto-Oncogene Proteins c-met/metabolism , Random Allocation , Tumor Burden/drug effects
4.
Oncotarget ; 8(40): 68047-68058, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28978095

ABSTRACT

Melphalan is a cytotoxic chemotherapy used to treat patients with multiple myeloma (MM). Bone resorption by osteoclasts, by remodeling the bone surface, can reactivate dormant MM cells held in the endosteal niche to promote tumor development. Dormant MM cells can be reactivated after melphalan treatment; however, it is unclear whether melphalan treatment increases osteoclast formation to modify the endosteal niche. Melphalan treatment of mice for 14 days decreased bone volume and the endosteal bone surface, and this was associated with increases in osteoclast numbers. Bone marrow cells (BMC) from melphalan-treated mice formed more osteoclasts than BMCs from vehicle-treated mice, suggesting that osteoclast progenitors were increased. Melphalan also increased osteoclast formation in BMCs and RAW264.7 cells in vitro, which was prevented with the cell stress response (CSR) inhibitor KNK437. Melphalan also increased expression of the osteoclast regulator the microphthalmia-associated transcription factor (MITF), but not nuclear factor of activated T cells 1 (NFATc1). Melphalan increased expression of MITF-dependent cell fusion factors, dendritic cell-specific transmembrane protein (Dc-stamp) and osteoclast-stimulatory transmembrane protein (Oc-stamp) and increased cell fusion. Expression of osteoclast stimulator receptor activator of NFκB ligand (RANKL) was unaffected by melphalan treatment. These data suggest that melphalan stimulates osteoclast formation by increasing osteoclast progenitor recruitment and differentiation in a CSR-dependent manner. Melphalan-induced osteoclast formation is associated with bone loss and reduced endosteal bone surface. As well as affecting bone structure this may contribute to dormant tumor cell activation, which has implications for how melphalan is used to treat patients with MM.

6.
Nat Commun ; 6: 8983, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26632274

ABSTRACT

Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched 'on' by engagement with bone-lining cells or osteoblasts, and switched 'off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse.


Subject(s)
Bone Remodeling/physiology , Multiple Myeloma/metabolism , Osteoclasts/physiology , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Coculture Techniques , Female , Humans , Male , Mice , Mice, Inbred Strains , Middle Aged , Osteoblasts/physiology
7.
Endocrinology ; 156(9): 3098-113, 2015 09.
Article in English | MEDLINE | ID: mdl-26018249

ABSTRACT

The ancestral glycoprotein hormone thyrostimulin is a heterodimer of unique glycoprotein hormone subunit alpha (GPA)2 and glycoprotein hormone subunit beta (GPB)5 subunits with high affinity for the TSH receptor. Transgenic overexpression of GPB5 in mice results in cranial abnormalities, but the role of thyrostimulin in bone remains unknown. We hypothesized that thyrostimulin exerts paracrine actions in bone and determined: 1) GPA2 and GPB5 expression in osteoblasts and osteoclasts, 2) the skeletal consequences of thyrostimulin deficiency in GPB5 knockout (KO) mice, and 3) osteoblast and osteoclast responses to thyrostimulin treatment. Gpa2 and Gpb5 expression was identified in the newborn skeleton but declined rapidly thereafter. GPA2 and GPB5 mRNAs were also expressed in primary osteoblasts and osteoclasts at varying concentrations. Juvenile thyrostimulin-deficient mice had increased bone volume and mineralization as a result of increased osteoblastic bone formation. However, thyrostimulin failed to induce a canonical cAMP response or activate the noncanonical Akt, ERK, or mitogen-activated protein kinase (P38) signaling pathways in primary calvarial or bone marrow stromal cell-derived osteoblasts. Furthermore, thyrostimulin did not directly inhibit osteoblast proliferation, differentiation or mineralization in vitro. These studies identify thyrostimulin as a negative but indirect regulator of osteoblastic bone formation during skeletal development.


Subject(s)
Bone and Bones/metabolism , Glycoproteins/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteogenesis , Animals , Bone Density , CHO Cells , Calcification, Physiologic , Cricetinae , Cricetulus , Female , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Paracrine Communication , Phenotype , Receptors, Thyrotropin/metabolism , Thyrotropin/metabolism
8.
Int J Cancer ; 136(7): 1731-40, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25156971

ABSTRACT

Micrometastasis is a barrier to the development of effective cancer therapies for prostate cancer metastasis to bone. The mechanisms remain incompletely characterised, primarily due to an inability to adequately monitor the initial metastatic events in vivo. This study aimed to establish a new model, allowing the tracking of prostate cancer cells homing to bone, and furthermore, to evaluate the response of this approach to therapeutic modulation, using the integrin antagonist GLPG0187. A single murine metatarsal was engrafted into a dorsal skinfold chamber implanted on a SCID mouse. Fluorescently-labeled human prostate (PC3-GFP) or oral (SCC4-GFP) cancer cells were administered via intracardiac (i.c) injection, with simultaneous daily GLPG0187 or vehicle-control treatment (i.p. 100 mg/kg/day) for the experimental duration. Metatarsal recordings were taken every 48 h for up to 4 weeks. Tissue was harvested and processed for microCT, multiphoton analysis, histology and immunohistochemistry. Cell viability, proliferation and migration in vitro were also quantified following treatment with GLPG0187. Metatarsals rapidly revascularised by inosculation with the host vasculature (day 5-7). PC3-GFP cells adhered to the microvascular endothelium and/or metatarsal matrix 3 days after administration, with adhesion maintained for the experimental duration. GLPG0187 treatment significantly (p < 0.05) reduced PC3 cell number within the metatarsal in vivo and reduced migration (p < 0.05) and proliferation (p < 0.05) but not cell viability in vitro. This new model allows evaluation of the early events of tumour-cell homing and localisation to the bone microenvironment, in addition to determining responses to therapeutic interventions.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/secondary , Integrins/antagonists & inhibitors , Prostatic Neoplasms/pathology , Animals , Antineoplastic Agents/administration & dosage , Bone Neoplasms/diagnosis , Bone Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Humans , Male , Mice , Neovascularization, Pathologic/drug therapy , Prostatic Neoplasms/drug therapy , Xenograft Model Antitumor Assays
9.
Cancer Discov ; 5(1): 35-42, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25312016

ABSTRACT

UNLABELLED: Recent clinical trials have shown that bisphosphonate drugs improve breast cancer patient survival independent of their antiresorptive effects on the skeleton. However, because bisphosphonates bind rapidly to bone mineral, the exact mechanisms of their antitumor action, particularly on cells outside of bone, remain unknown. Here, we used real-time intravital two-photon microscopy to show extensive leakage of fluorescent bisphosphonate from the vasculature in 4T1 mouse mammary tumors, where it initially binds to areas of small, granular microcalcifications that are engulfed by tumor-associated macrophages (TAM), but not tumor cells. Importantly, we also observed uptake of radiolabeled bisphosphonate in the primary breast tumor of a patient and showed the resected tumor to be infiltrated with TAMs and to contain similar granular microcalcifications. These data represent the first compelling in vivo evidence that bisphosphonates can target cells in tumors outside the skeleton and that their antitumor activity is likely to be mediated via TAMs. SIGNIFICANCE: Bisphosphonates are assumed to act solely in bone. However, mouse models and clinical trials show that they have surprising antitumor effects outside bone. We provide unequivocal evidence that bisphosphonates target TAMs, but not tumor cells, to exert their extraskeletal effects, offering a rationale for use in patients with early disease.


Subject(s)
Bone Density Conservation Agents/metabolism , Diphosphonates/metabolism , Macrophages/metabolism , Neoplasms/diagnosis , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Animals , Bone Density Conservation Agents/therapeutic use , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Calcinosis , Carbocyanines , Diphosphonates/therapeutic use , Disease Models, Animal , Female , Humans , Macrophages/drug effects , Macrophages/immunology , Mice , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness , Neoplasms/drug therapy , Phagocytosis/immunology , Xenograft Model Antitumor Assays
10.
PLoS One ; 7(2): e30885, 2012.
Article in English | MEDLINE | ID: mdl-22355332

ABSTRACT

A major challenge in the management of patients with prostate cancer is identifying those individuals at risk of developing metastatic disease, as in most cases the disease will remain indolent. We analyzed pooled serum samples from 4 groups of patients (n = 5 samples/group), collected prospectively and actively monitored for a minimum of 5 yrs. Patients groups were (i) histological diagnosis of benign prostatic hyperplasia with no evidence of cancer 'BPH', (ii) localised cancer with no evidence of progression, 'non-progressing' (iii) localised cancer with evidence of biochemical progression, 'progressing', and (iv) bone metastasis at presentation 'metastatic'. Pooled samples were immuno-depleted of the 14 most highly abundant proteins and analysed using a 4-plex iTRAQ approach. Overall 122 proteins were identified and relatively quantified. Comparisons of progressing versus non-progressing groups identified the significant differential expression of 25 proteins (p<0.001). Comparisons of metastatic versus progressing groups identified the significant differential expression of 23 proteins. Mapping the differentially expressed proteins onto the prostate cancer progression pathway revealed the dysregulated expression of individual proteins, pairs of proteins and 'panels' of proteins to be associated with particular stages of disease development and progression. The median immunostaining intensity of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1), one of the candidates identified, was significantly higher in osteoblasts in close proximity to metastatic tumour cells compared with osteoblasts in control bone (p = 0.0353, Mann Whitney U). Our proteomic approach has identified leads for potentially useful serum biomarkers associated with the metastatic progression of prostate cancer. The panels identified, including eEF1A1 warrant further investigation and validation.


Subject(s)
Biomarkers, Tumor/metabolism , Bone Neoplasms/metabolism , Osteosarcoma/metabolism , Prostatic Hyperplasia/metabolism , Prostatic Neoplasms/metabolism , Proteomics , Tandem Mass Spectrometry , Aged , Biomarkers, Tumor/genetics , Blotting, Western , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Disease Progression , Humans , Immunoenzyme Techniques , Male , Neoplasm Grading , Osteosarcoma/genetics , Osteosarcoma/secondary , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Prospective Studies , Prostate-Specific Antigen/blood , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...