Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Entomol Res ; 95(2): 133-44, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15877862

ABSTRACT

Infection of Lacanobia oleracea (Linnaeus) larvae with the microsporidium Vairimorpha necatrix (Kramer) resulted in significant effects on the survival and development of the braconid parasitoid, Meteorus gyrator (Thunberg). Female M. gyrator did not show any avoidance of V. necatrix-infected hosts when they were selecting hosts for oviposition. When parasitism occurred at the same time as infection by the pathogen, or up to four days later, no significant detrimental effects on the parasitoid were observed. However, when parasitism occurred six to eight days after infection, a greater proportion (12.5-14%) of hosts died before parasitoid larvae egressed. Successful eclosion of adult wasps was also reduced. When parasitism and infection were concurrent, parasitoid larval development was significantly faster in infected hosts, and cocoons were significantly heavier. However, as the time interval between infection and parasitism increased, parasitoid larval development was significantly extended by up to two days, and the cocoons formed were significantly (c. 20%) smaller. Vairimorpha necatrix spores were ingested by the developing parasitoid larvae, accumulated in the occluded midgut, and were excreted in the meconium upon pupation.


Subject(s)
Microsporida , Moths/parasitology , Wasps/physiology , Analysis of Variance , Animals , Female , Histological Techniques , Host-Parasite Interactions , Larva/anatomy & histology , Larva/growth & development , Larva/parasitology , Solanum lycopersicum , Oviposition/physiology , Reproduction/physiology , Spores/physiology , Time Factors , United Kingdom
2.
Transgenic Res ; 10(3): 223-36, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11437279

ABSTRACT

Clonal replicates of different transformed potato plants expressing transgene constructs containing the constitutive Cauliflower Mosaic Virus (CaMV) 35S promoter, and sequences encoding the plant defensive proteins snowdrop lectin (Galanthus nivalis agglutinin; GNA), and bean chitinase (BCH) were propagated in tissue culture. Plants were grown to maturity, at first under controlled environmental conditions, and later in the glasshouse. For a given transgene product, protein accumulation was found to vary between the different lines of clonal replicates (where each line was derived from a single primary transformant plant), as expected. However, variability was also found to exist within each line of clonal replicates, comparable to the variation of mean expression levels observed between the different clonal lines. Levels of GNA, accumulated in different parts of a transgenic potato plant, also showed variation but to a lesser extent than plant-plant variation in expression. With the majority of the clonal lines investigated, accumulation of the transgene product was found to increase as the potato plant developed, with maximum levels found in mature plants. The variation in accumulation of GNA among transgenic plants within a line of clonal replicates was exploited to demonstrate that the enhanced resistance towards larvae of the tomato moth, Lacanobia oleracea L., caused by expression of this protein in potato, was directly correlated with the level of GNA present in the plants, and that conditions under which the plants were grown affect the levels of GNA expression and subsequent levels of insect resistance.


Subject(s)
Mannose-Binding Lectins , Moths/physiology , Plant Diseases/genetics , Plant Diseases/parasitology , Solanum tuberosum/genetics , Solanum tuberosum/parasitology , Transgenes/genetics , Animals , Caulimovirus/genetics , Chitinases/genetics , Chitinases/metabolism , Environment , Gene Expression , Larva/growth & development , Lectins/genetics , Lectins/metabolism , Moths/growth & development , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/parasitology , Plant Lectins , Plants, Genetically Modified , Solanum tuberosum/growth & development , Solanum tuberosum/metabolism
3.
Pest Manag Sci ; 57(1): 57-65, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11455633

ABSTRACT

Cowpea trypsin inhibitor (CpTI) was shown to have a deleterious effect on the growth and development of larvae of the tomato moth, Lacanobia oleracea, when incorporated in artificial diet (2.0% of soluble protein) and expressed in transgenic potato leaf (up to 1.0% of soluble protein). The effect of CpTI on parasitism of L oleracea by the ectoparasitoid Eulophus pennicornis was investigated. The parasitic success of the wasp was reduced by the presence of CpTI in the diet of the host and, in the case of transgenic potato leaves expressing the transgene protein, was collated with the length of time the host fed on the diet prior to parasitism. In all cases the proportion of hosts parasitised when fed CpTI-containing diets was reduced when compared with controls, although these differences were only significant when hosts were fed from the third instar on the transgenic potato leaves. Parasitoid progeny that developed on L oleracea reared on CpTI-containing diets, however, were not adversely affected. These results show that, whilst expression of CpTI in transgenic potato plants confers resistance to the lepidopterous pest L oleracea, adverse effects on the ability of the ectoparasitoid E pennicornis to parasitise this moth species successfully may also occur. These results are discussed in relation to the potential impact of transgenic crops on beneficial biological control agents.


Subject(s)
Hymenoptera/drug effects , Insecticides/pharmacology , Lepidoptera/drug effects , Trypsin Inhibitors/pharmacology , Animals , Body Weight , Diet , Fabaceae/chemistry , Host-Parasite Interactions/physiology , Hymenoptera/growth & development , Insect Control , Insecticides/metabolism , Larva/growth & development , Larva/parasitology , Lepidoptera/growth & development , Lepidoptera/parasitology , Pest Control, Biological , Plant Proteins/adverse effects , Plants, Genetically Modified/adverse effects , Plants, Medicinal , Risk Assessment , Trypsin Inhibitors/metabolism
4.
J Insect Physiol ; 47(12): 1357-1366, 2001 Dec.
Article in English | MEDLINE | ID: mdl-12770142

ABSTRACT

Aphid parasitoids are important biological control agents. The possibility arises that whilst foraging on insect-resistant transgenic plants, they are themselves at risk from direct and indirect effects of the expression of a transgene used to control the pest species. A liquid artificial diet was successfully used to deliver the snowdrop lectin (Galanthus nivalis agglutinin; GNA) to the peach-potato aphid, Myzus persicae. Bioassays utilising artificial diet incorporating GNA, and excised leaves of the GNA-expressing transgenic potato line, GNA2#28, were performed to assess the potential effects of GNA on the development of the aphid parasitoid Aphidius ervi. The results indicate that GNA delivered via artificial diet to the aphids can be transferred through the trophic levels and has a dose-dependent effect on parasitoid development. Parasitoid larvae excreted most of the ingested GNA in the meconium but some of it was detected in the pupae. Although A. ervi development was not affected when developing within hosts feeding on transgenic potato leaves, this probably reflected sub-optimal expression of the toxin in the transgenic potato line used

5.
J Insect Physiol ; 46(4): 379-391, 2000 Apr.
Article in English | MEDLINE | ID: mdl-12770202

ABSTRACT

Two-spot ladybird (Adalia bipunctata L.) larvae were fed on aphids (Myzus persicae (Sulz.)) which had been loaded with snowdrop lectin (Galanthus nivalis agglutinin; GNA) by feeding on artificial diet containing the protein. Treatment with GNA significantly decreased the growth of aphids. No acute toxicity of GNA-containing aphids towards the ladybird larvae was observed, although there were small effects on development. When fed a fixed number of aphids, larvae exposed to GNA spent longer in the 4th instar, taking 6 extra days to reach pupation; however, retardation of development was not observed in ladybird larvae fed equal weights of aphids. Ladybird larvae fed GNA-containing aphids were found to be 8-15% smaller than controls, but ate a significantly greater number of aphids (approx. 40% to pupation). GNA was shown to be present on the microvilli of the midgut brush border membrane and within gut epithelial cells in ladybird larvae fed on GNA-dosed aphids, although disruption of the brush border was not observed. It is hypothesised that GNA does not have significant direct toxic or adverse effects on developing ladybird larvae, but that the effects observed may be due to the fact that the aphids fed on GNA are compromised and are thus a suboptimal food.

6.
Parasitology ; 119 ( Pt 2): 157-66, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10466123

ABSTRACT

Hymenopteran, parasitoid wasps have good potential for use in integrated pest management (IPM); for example, the gregarious ectoparasitoid, Eulophus pennicornis, has been suggested as a biological control agent for larvae of the tomato moth (Lacanobia oleracea L.). However, the processes by which such parasitic larvae are able to utilize the nutritional resource provided by the host have been little studied. Protease activity was present in E. pennicornis larvae, and characterization of the enzymes responsible for proteolysis was performed using a range of synthetic substrates and specific inhibitors. Serine protease enzymes was both trypsin- and chymotrypsin-like activities were present. A range of plant-derived serine protease inhibitors was tested for activity against these enzymes. Certain inhibitors, notably soybean Kunitz inhibitor (SKTI), inhibited enzyme activity by > 80% at < 10(-5) M. When SKTI was fed to L. oleracea larvae in an artificial diet, the inhibitor was subsequently detected within the larval haemolymph, showing that protease inhibitors in the host diet can be delivered to a parasitoid via the host haemolymph. If transgenic plants expressing foreign protease inhibitors for protection against insect pests are to form a component of IPM systems, possible adverse effects, whether direct or indirect, of transgene expression on parasitoids like E. pennicornis should be considered.


Subject(s)
Moths/parasitology , Serine Endopeptidases/drug effects , Serine Proteinase Inhibitors/pharmacology , Wasps/enzymology , Animals , Hemolymph/chemistry , Insect Control , Larva/anatomy & histology , Larva/enzymology , Pest Control, Biological , Solanum tuberosum/chemistry , Substrate Specificity , Wasps/anatomy & histology
7.
J Insect Physiol ; 45(11): 983-991, 1999 Nov.
Article in English | MEDLINE | ID: mdl-12770273

ABSTRACT

Snowdrop lectin (Galanthus nivalis agglutinin, GNA) has previously been shown to confer significant levels of protection against the lepidopteran pest Lacanobia oleracea when expressed in transgenic potato. The effect of GNA on the parasitism of L. oleracea by the gregarious ectoparasitoid Eulophus pennicornis was investigated. Maize-based, and potato leaf-based diets containing GNA, and excised transgenic potato leaves expressing GNA, were fed to L. oleracea larvae from the beginning of either the third or fourth larval instar. Lacanobia oleracea larvae were individually exposed to single mated adult female E. pennicornis parasitoids from the fifth instar onwards.The success of the wasp was not reduced by the presence of GNA in any of the diets, or by the length of feeding of the host prior to parasitism. However, the mean number of wasps that developed on L. oleracea reared from the third instar on the GNA-containing maize diet was significantly higher than on the controls (20.6 and 9.3 adults/host respectively). In all other cases differences were not significant. Eulophus pennicornis progeny that developed on L. oleracea reared on GNA-containing diets showed little or no alteration in size, longevity, egg load and fecundity when compared with wasps that had developed on hosts fed the respective control diets.The results suggest that expression of GNA in transgenic crops to confer resistance to lepidopteran pests will not adversely affect the ability of the ectoparasitoid E. pennicornis to utilise the pest species as a host.

SELECTION OF CITATIONS
SEARCH DETAIL
...