Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Small ; 19(28): e2300520, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37191281

ABSTRACT

Nanotechnology has delivered an amazing range of new materials such as nanowires, tubes, ribbons, belts, cages, flowers, and sheets. However, these are usually circular, cylindrical, or hexagonal in nature, while nanostructures with square geometries are comparatively rare. Here, a highly scalable method is reported for producing vertically aligned Sb-doped SnO2 nanotubes with perfectly-square geometries on Au nanoparticle covered m-plane sapphire using mist chemical vapor deposition. Their inclination can be varied using r- and a-plane sapphire, while unaligned square nanotubes of the same high structural quality can be grown on silicon and quartz. X-ray diffraction measurements and transmission electron microscopy show that they adopt the rutile structure growing in the [001] direction with (110) sidewalls, while synchrotron X-ray photoelectron spectroscopy reveals the presence of an unusually strong and thermally resilient 2D surface electron gas. This is created by donor-like states produced by the hydroxylation of the surface and is sustained at temperatures above 400 °C by the formation of in-plane oxygen vacancies. This persistent high surface electron density is expected to prove useful in gas sensing and catalytic applications of these remarkable structures. To illustrate their device potential, square SnO2 nanotube Schottky diodes and field effect transistors with excellent performance characteristics are fabricated.

2.
Langmuir ; 37(38): 11397-11405, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34520216

ABSTRACT

A new coupling reaction, the para-fluoro-thiol (PFT) reaction, activated by base at room temperature, is reported for carbon surface functionalization. 4-Nitrothiophenol (4-NTP) and (3-nitrobenzyl)mercaptan (3-NBM) were coupled to pentafluorophenyl (F5-Ph) anchor layers grafted from the aryldiazonium ion formed in situ. The relative yields of the PFT reactions, estimated from the electrochemical responses of coupled nitrophenyl (NP) and nitrobenzyl (NB) groups, depended on the nucleophilicity of the thiolate and the strength of the base. The highest surface concentration (4.6 × 10-10 mol cm-2) was obtained using 3-NBM in the presence of [Bu4N]OH; this concentration corresponds to the maximum that is typically achieved for other high-yielding coupling reactions at aryldiazonium ion anchor layers. The PFT reaction is expected to be applicable to the numerous thiol derivatives commonly restricted to self-assembled monolayer (SAM) formation at gold and other noble metals, thereby opening a simple new approach for interface design on carbon substrates. The strategy may also have advantages for modification of gold surfaces: the layer prepared by coupling 3-NBM to F5-Ph films on gold was found to be more stable to storage under ambient conditions than self-assembled monolayers of 3-NBM.

3.
Chemphyschem ; 22(13): 1344-1351, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33942472

ABSTRACT

ZnO is a strong candidate for transparent electronic devices due to its wide band gap and earth-abundance, yet its practical use is limited by its surface metallicity arising from a surface electron accumulation layer (SEAL). The SEAL forms by hydroxylation of the surface under normal atmospheric conditions, and is present at all crystal faces of ZnO, although with differing hydroxyl structures. Multilayer aryl films grafted from aryldiazonium salts have previously been shown to decrease the downward bending at O-polar ZnO thin films, with Zn-O-C bonds anchoring the aryl films to the substrate. Herein we show that the Zn-polar (0001), O-polar (000 1‾ ), and non-polar m-plane (10 1‾ 0) faces of ZnO single crystals, can also be successfully electrografted with nitrophenyl (NP) films. In all cases, X-ray photoelectron spectroscopy (XPS) measurements reveal that the downward surface band bending decreases after modification. XPS provides strong evidence for Zn-O-C bonding at each face. Electrochemical reduction of NP films on O-polar ZnO single crystals converts the film to a mainly aminophenyl layer, although with negligible further change in band bending. This contrasts with the large upward shifts in band bending caused by X-ray induced reduction.

4.
ACS Appl Mater Interfaces ; 13(10): 11545-11570, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33683855

ABSTRACT

Aryldiazonium ions are widely used reagents for surface modification. Attractive aspects of their use include wide substrate compatibility (ranging from plastics to carbons to metals and metal oxides), formation of stable covalent bonding to the substrate, simplicity of modification methods that are compatible with organic and aqueous solvents, and the commercial availability of many aniline precursors with a straightforward conversion to the active reagent. Importantly, the strong bonding of the modifying layer to the surface makes the method ideally suited to further on-surface (postfunctionalization) chemistry. After an initial grafting from a suitable aryldiazonium ion to give an anchor layer, a target species can be coupled to the layer, hugely expanding the range of species that can be immobilized. This strategy has been widely employed to prepare materials for numerous applications including chemical sensors, biosensors, catalysis, optoelectronics, composite materials, and energy conversion and storage. In this Review our goal is first to summarize how a target species with a particular functional group may be covalently coupled to an appropriate anchor layer. We then review applications of the resulting materials.

5.
Phys Chem Chem Phys ; 21(32): 17913-17922, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31380874

ABSTRACT

Tin(iv) dioxide (SnO2) is a technologically important transparent conducting oxide with high chemical stability. In air, the SnO2 surface is terminated with hydroxyl groups which cause the electronic bands to bend downward at the surface capturing a two-dimensional surface electron accumulation layer (SEAL). The SEAL promotes adsorption at the surface, giving environmentally-sensitive electronic properties; this sensitivity is a barrier to some potential applications of the material. This work investigates surface modification of SnO2via reaction with an aryldiazonium salt as a route to controlling the surface band bending. We compare the surface layers formed by reaction at open-circuit potential and under potential control of 4-(trifluoromethyl)benzene diazonium ions with moderately- and highly-doped (101) SnO2 thin films grown by plasma-assisted molecular beam epitaxy. Atomic force microscopy and synchrotron X-ray photoelectron spectroscopy (XPS) measurements demonstrate that both reaction conditions lead to covalently-attached 4-(trifluoromethyl)phenyl groups, with grafting at open-circuit potential giving thinner layers (<2 nm) and fewer direct bonds to the surface than electrografting (layer thickness >3 nm). Valence band investigations show that for all samples the 4-(trifluoromethyl)phenyl layers decrease the surface downward band bending with the greatest effect observed for the electrografted sample. In the latter case, a +0.29 eV shift in band bending relative to that of the unmodified material indicates the success in turning the surface electron accumulation layer into a depletion layer.

6.
Front Mol Biosci ; 5: 97, 2018.
Article in English | MEDLINE | ID: mdl-30510932

ABSTRACT

All eukaryotic organisms require iron to function. Malfunctions within iron homeostasis have a range of physiological consequences, and can lead to the development of pathological conditions that can result in an excess of non-transferrin bound iron (NTBI). Despite extensive understanding of iron homeostasis, the links between the "macroscopic" transport of iron across biological barriers (cellular membranes) and the chemistry of redox changes that drive these processes still needs elucidating. This review draws conclusions from the current literature, and describes some of the underlying biophysical and biochemical processes that occur in iron homeostasis. By first taking a broad view of iron uptake within the gut and subsequent delivery to tissues, in addition to describing the transferrin and non-transferrin mediated components of these processes, we provide a base of knowledge from which we further explore NTBI uptake. We provide concise up-to-date information of the transplasma electron transport systems (tPMETSs) involved within NTBI uptake, and highlight how these systems are not only involved within NTBI uptake for detoxification but also may play a role within the reduction of metabolic stress through regeneration of intracellular NAD(P)H/NAD(P)+ levels. Furthermore, we illuminate the thermodynamics that governs iron transport, namely the redox potential cascade and electrochemical behavior of key components of the electron transport systems that facilitate the movement of electrons across the plasma membrane to the extracellular compartment. We also take account of kinetic changes that occur to transport iron into the cell, namely membrane dipole change and their consequent effects within membrane structure that act to facilitate transport of ions.

7.
Faraday Discuss ; 199: 49-61, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28436527

ABSTRACT

We have recently reported that reversible electrowetting can be observed on the basal plane of graphite, without the presence of a dielectric layer, in both liquid/air and liquid/liquid configurations. The influence of carbon structure on the wetting phenomenon is investigated in more detail here. Specifically, it is shown that the adsorption of adventitious impurities on the graphite surface markedly suppresses the electrowetting response. Similarly, the use of pyrolysed carbon films, although exhibiting a roughness below the threshold previously identified as the barrier to wetting on basal plane graphite, does not give a noticeable electrowetting response, which leads us to conclude that specific interactions at the water-graphite interface as well as graphite crystallinity are responsible for the reversible response seen in the latter case. Preliminary experiments on mechanically exfoliated and chemical vapour deposition grown graphene are also reported.

8.
ACS Appl Mater Interfaces ; 8(45): 31392-31402, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27768292

ABSTRACT

ZnO is a prime candidate for future use in transparent electronics; however, development of practical materials requires attention to factors including control of its unusual surface band bending and surface reactivity. In this work, we have modified the O-polar (0001̅), Zn-polar (0001), and m-plane (101̅0) surfaces of ZnO with phosphonic acid (PA) derivatives and measured the effect on the surface band bending and surface sensitivity to atmospheric oxygen. Core level and valence band synchrotron X-ray photoemission spectroscopy was used to measure the surface band bending introduced by PA modifiers with substituents of opposite polarity dipole moment: octadecylphosphonic acid (ODPA) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylphosphonic acid (F13OPA). Both PAs act as surface electron donors, increasing the downward band bending and the strength of the two-dimensional surface electron accumulation layer on all of the ZnO surfaces investigated. On the O-polar (0001̅) and m-plane (101̅0) surfaces, the ODPA modifier produced the largest increase in downward band bending relative to the hydroxyl-terminated unmodified surface of 0.55 and 0.35 eV, respectively. On the Zn-polar (0001) face, the F13OPA modifier gave the largest increase (by 0.50 eV) producing a total downward band bending of 1.00 eV, representing ∼30% of the ZnO band gap. Ultraviolet (UV) photoinduced surface wettability and photoconductivity measurements demonstrated that the PA modifiers are effective at decreasing the sensitivity of the surface toward atmospheric oxygen. Modification with PA derivatives produced a large increase in the persistence of UV-induced photoconductivity and a large reduction in UV-induced changes in surface wettability.

9.
ACS Appl Mater Interfaces ; 8(35): 23389-95, 2016 Sep 07.
Article in English | MEDLINE | ID: mdl-27529723

ABSTRACT

Methods that reliably yield monolayers of covalently anchored modifiers on graphene and other planar graphitic materials are in demand. Covalently bonded groups can add functionality to graphitic carbon for applications ranging from sensing to supercapacitors and can tune the electronic and optical properties of graphene. Limiting modification to a monolayer gives a layer with well-defined concentration and thickness providing a minimum barrier to charge transfer. Here we investigate the use of anthranilic acid derivatives for grafting aryl groups to few layer graphene and pyrolyzed photoresist film (PPF). Under mild conditions, anthranilic acids generate arynes, which undergo Diels-Alder cycloadditions. Using spectroscopy, electrochemistry, and atomic force microscopy, we demonstrate that the reaction yields monolayers of aryl groups on graphene and PPF with maximum surface coverages consistent with densely packed layers. Our study confirms that anthranilic acids offer a convenient route to covalent modification of planar graphitic carbons (both basal and edge plane materials).

10.
Langmuir ; 32(11): 2626-37, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26918953

ABSTRACT

A new strategy for preparation of robust multifunctional low nanometer thickness monolayers on carbon substrates is presented. Beginning with protected aryldiazonium salts, sparse monolayers of ethynyl-, amino-, and carboxy-terminated tethers are covalently anchored to the surface. The layers are then backfilled with a second modifier via the nucleophilic addition of an amine derivative to the surface. Through use of electroactive moieties coupled to the tethers, and an electroactive amine for backfilling, electrochemical measurements reveal that backfilling approximately doubles the surface concentration of the monolayer. Cyclic voltammetry of solution-based redox probes at the modified surfaces is consistent with the expected blocking properties at various stages of surface preparation. Fractional surface coverages of the layers are estimated using electrochemically determined surface concentrations of modifiers and computationally derived modifier footprints. Assuming free rotation of the coupled ferrocenyl or nitrophenyl groups leads to physically unreasonable fractional surface coverages, indicating that these larger modifiers must be rotationally restricted. Using a conformationally constrained model produces lower bound estimates of the total fractional surface coverage close to 0.4, with tether-only coverages close to 0.2. The backfilled tether layers constitute practical platforms for controlled construction of complex interfaces with many potential applications including sensing, molecular electronics, and catalysis.

11.
Langmuir ; 32(2): 468-76, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26694857

ABSTRACT

Cyclic voltammograms for the reduction of aryldiazonium ions at glassy carbon electrodes are often, but not always, reported to show two peaks. The origin of this intriguing behavior remains controversial. Using 4-nitrobenzenediazonium ion (NBD), the most widely studied aryldiazonium salt, we make a detailed examination of the electroreduction processes in acetonitrile solution. We confirm that deposition of film can occur during both reduction processes. Film thickness measurements using atomic force microscopy reveal that multilayer films of very similar thickness are formed when reduction is carried out at either peak, even though the film formed at the more negative potential is significantly more blocking to solution redox probes. These and other aspects of the electrochemistry are consistent with the operation of a surface-catalyzed reduction step (proceeding at a clean surface only) followed by an uncatalyzed reduction at a more negative potential. The catalyzed reduction proceeds at both edge-plane and basal-plane graphite materials, suggesting that particular carbon surface sites are not required. The unusual aspect of aryldiazonium ion electrochemistry is that unlike other surface-catalyzed reactions, both processes are seen in a single voltammetric scan at an initially clean electrode because the conditions for observing the uncatalyzed reaction are produced by film deposition during the first catalyzed reduction step.

12.
ACS Appl Mater Interfaces ; 7(42): 23527-37, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26438964

ABSTRACT

Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular "pulse" of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon/chemistry , Reactive Oxygen Species/isolation & purification , Animals , Lipopolysaccharides/chemistry , Macrophages/drug effects , Mice , NADPH Oxidases/chemistry , Reactive Oxygen Species/chemistry , Toll-Like Receptor 4/chemistry
13.
Langmuir ; 31(18): 5071-7, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25874652

ABSTRACT

Aminophenyl and aminomethylphenyl monolayers have been electrografted to glassy carbon and pyrolyzed photoresist film from the corresponding diazonium ions using a protection-deprotection strategy based on Boc (tert-butyloxycarbonyl) and Fmoc (fluorenylmethyloxycarbonyl) groups. After grafting and then deprotecting films of Boc-NH-Ar, Fmoc-NH-Ar, and Fmoc-NH-CH2-Ar, depth profiling by atomic force microscopy confirmed that the resulting amine-terminated films were monolayers. In contrast, after deprotection, Boc-NH-CH2-Ar gave a multilayer film. Electroactive carboxylic acid derivatives were coupled to the monolayers through amide linkages. Electrochemical measurements revealed that the deprotected Fmoc-NH-CH2-Ar monolayer gave the highest surface concentration of coupled nitrophenyl and ferrocenyl groups and DFT calculations established that this monolayer has the highest theoretical surface concentration of those examined.

14.
Sci Rep ; 4: 5216, 2014 Jun 09.
Article in English | MEDLINE | ID: mdl-24910017

ABSTRACT

Redox mediators can interact with eukaryote cells at a number of different cell locations. While cell membrane redox centres are easily accessible, the redox centres of catabolism are situated within the cytoplasm and mitochondria and can be difficult to access. We have systematically investigated the interaction of thirteen commonly used lipophilic and hydrophilic mediators with the yeast Saccharomyces cerevisiae. A double mediator system is used in which ferricyanide is the final electron acceptor (the reporter mediator). After incubation of cells with mediators, steady state voltammetry of the ferri/ferrocyanide redox couple allows quantitation of the amount of mediator reduced by the cells. The plateau current at 425 mV vs Ag/AgCl gives the analytical signal. The results show that five of the mediators interact with at least three different trans Plasma Membrane Electron Transport systems (tPMETs), and that four mediators cross the plasma membrane to interact with cytoplasmic and mitochondrial redox molecules. Four of the mediators inhibit electron transfer from S. cerevisiae. Catabolic inhibitors were used to locate the cellular source of electrons for three of the mediators.


Subject(s)
Cell Membrane/metabolism , Cell Membrane/physiology , Electron Transport/physiology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Cytoplasm/metabolism , Cytoplasm/physiology , Ferricyanides/metabolism , Mitochondria/metabolism , Mitochondria/physiology , Oxidation-Reduction
15.
Langmuir ; 30(24): 7104-11, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24874712

ABSTRACT

Electrografting of aryl films to electrode surfaces from diazonium ion solutions is a widely used method for preparation of modified electrodes. In the absence of deliberate measures to limit film growth, the usual film structure is a loosely packed multilayer. For some applications, monolayer films are advantageous; our interest is in preparing well-defined monolayers of reactive tethers for further on-surface chemistry. Here, we describe the synthesis of an aryl diazonium salt with a protected carboxylic acid substituent. After electrografting to glassy carbon electrodes and subsequent deprotection, the layer is reacted with amine derivatives. Electrochemistry and atomic force microscopy are used to monitor the grafting, deprotection, and subsequent coupling steps. Attempts to follow the same procedures on gold surfaces suggest that the grafted layer is not stable in these reaction conditions.

16.
Langmuir ; 30(17): 4989-96, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24713081

ABSTRACT

Aminophenyl films, electrografted to conducting substrates from a solution of the corresponding diazonium ion, are a useful platform for building up functional surfaces. In our hands, reproducible preparation of aminophenyl films via electrografting is difficult, suggesting competing grafting pathways. To investigate the grafting process without the possibility of reduction of the diazonium ion by the substrate, we have used a spin-coated and cured SU-8 substrate that is nonconducting and very smooth (rms surface roughness 0.43 nm). After in situ formation of the aminobenzenediazonium ion (50 mM) in acidic solution, the substrate was added to the solution in the presence and absence of reducing agents (hypophosphorous acid and iron powder). At short reaction times, the films prepared with and without reducing agent have the same thickness and composition (as revealed by X-ray photoelectron spectroscopy). However, in the presence of a reducing agent, films reach a limiting thickness of 7-8 nm after 10 min, whereas, in the absence of a reducing agent, strong film growth continues, giving a film thickness of 14 nm after 120 min. This behavior contrasts with that of other diazonium ions which, in the absence of an applied potential, a reducing agent, or a reducing substrate, give only very thin films after long reaction times.


Subject(s)
Diazonium Compounds/chemistry , Electrochemistry , Photoelectron Spectroscopy , Surface Properties
18.
J Nanosci Nanotechnol ; 13(1): 728-31, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23646807

ABSTRACT

A simple method for producing patterned forests of multiwalled carbon nanotubes (MWCNTs) is described. An aqueous metal salt solution is spin-coated onto a substrate patterned with photoresist by standard methods. The photoresist is removed by acetone washing leaving the acetone-insoluble catalyst pattern on the substrate. Dense forests of vertically aligned (VA) MWCNTs are grown on the patterned catalyst layers by chemical vapour deposition. The procedures have been demonstrated by growing MWCNT forests on two substrates: silicon and conducting graphitic carbon films. The forests adhere strongly to the substrates and when grown directly on carbon film, offer a simple method of preparing MWCNT electrodes.


Subject(s)
Crystallization/methods , Molecular Imprinting/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Photography/methods , Catalysis , Macromolecular Substances/chemistry , Materials Testing , Metals/chemistry , Molecular Conformation , Particle Size , Salts/chemistry , Solutions , Surface Properties , Trees
19.
Langmuir ; 29(9): 3133-9, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23398449

ABSTRACT

Sequential electrografting at glassy carbon from aryldiazonium salt solutions, or an aryldiazonium salt followed by an arylhydrazine, leads to the formation of covalently attached monolayer films incorporating two modifiers. In the first step, a 4-((triisopropylsilyl)ethynyl)phenyl film is electrografted to the surface, followed by removal of the triisopropylsilyl group to give a submonolayer of phenylethynylene groups. Two general strategies can then be applied to "fill in" the sparse monolayer with a second modifier. In the first route, nitrophenyl groups are grafted to the phenylethynylene-modified surface by the oxidation of 4-nitrophenylhydrazine. Ferrocene can be coupled to the terminal alkyne groups on the surface via a click reaction with azidomethylferrocene; an electrochemical measurement of the amount of immobilized ferrocene demonstrates that the phenylethynylene layer retains close to full reactivity after the second grafting step. In the alternative strategy, ferrocene is coupled to the phenylethynylene layer prior to grafting nitrophenyl groups by the reduction of the 4-nitrobenzenediazonium ion or by the oxidation of 4-nitrophenylhydrazine. For all approaches, the optimization of the grafting conditions gives surface concentrations of ferrocene and nitrophenyl groups that are consistent with those of a mixed monolayer. The stepwise generation of mixed monolayers is also monitored by film thickness measurements by depth profiling using the atomic force microscope. Thickness values are consistent with the proposed film structure in each preparation step.

20.
Anal Chem ; 83(21): 8347-51, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21942378

ABSTRACT

We describe the reproducible fabrication of robust, vertically aligned multiwalled carbon nanotube (VACNT)/epoxy composite electrodes. The electrodes are characterized by cyclic voltammetry, impedance spectroscopy, and scanning electron and atomic force microscopies. Low background currents are obtained at the electrodes, and common redox probe molecules and NADH show excellent voltammetric behavior. When electrode performance deteriorates due to fouling, the electrode surfaces can be reproducibly renewed by mechanical polishing followed by O(2) plasma treatment. The electrochemical performance of the electrodes is maintained after more than 100 cycles of use and renewal.


Subject(s)
Electrochemical Techniques/instrumentation , Epoxy Resins/chemistry , Nanotubes, Carbon/chemistry , Oxygen/chemistry , Electrodes , Microscopy, Atomic Force , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...