Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacotherapy ; 36(7): 749-56, 2016 07.
Article in English | MEDLINE | ID: mdl-27284735

ABSTRACT

STUDY OBJECTIVE: To examine the effect of increased gastric pH on exposure to evacetrapib, a cholesteryl ester transfer protein inhibitor evaluated for the treatment of atherosclerotic heart disease. DESIGN: Open-label, two-treatment, two-period, fixed-sequence crossover study. SETTING: Clinical research unit. SUBJECTS: Thirty-four healthy subjects. INTERVENTION: In period 1, subjects received a single oral dose of evacetrapib 130 mg on day 1, followed by 7 days of analysis for evacetrapib plasma concentrations. In period 2, subjects received a once/day oral dose of omeprazole 40 mg on days 8-20, with a single oral dose of evacetrapib 130 mg administered 2 hours after the omeprazole dose on day 14, followed by 7 days of pharmacokinetic sampling. Subjects were discharged on day 21 and returned for a follow-up visit at least 14 days after the last dose of evacetrapib in period 2. Gastric pH was measured before subjects received each evacetrapib dose. MEASUREMENTS AND MAIN RESULTS: Noncompartmental pharmacokinetic parameters were estimated from plasma concentration-time data and compared between periods 1 and 2. Geometric mean ratios with 90% confidence intervals (CIs) were reported. Safety and tolerability were also assessed. The mean age of the 34 subjects was 40.9 years; mean body mass index was 27.2 kg/m(2) . Omeprazole treatment increased mean gastric pH across all subjects by 2.80 and increased evacetrapib area under the concentration versus time curve from time zero extrapolated to infinity (AUC0-∞ ) and maximum observed drug concentration (Cmax ) by 15% (90% CI -2 to 35) and 30% (90% CI 3-63), respectively. For both parameters, the upper bound of the 90% CI of the ratio of geometric least-squares means exceeded 1.25 but was less than 2, indicating a weak interaction. To assess the effect of gastric pH on subjects who responded best to omeprazole treatment, the analyses were repeated to include only the 22 subjects whose predose gastric pH was 3.0 or lower in period 1 and 4.0 or higher in period 2. In this subpopulation, mean gastric pH increased by 4.15 during omeprazole treatment, and evacetrapib AUC0-∞ and Cmax increased by 22% (90% CI 4-42) and 35% (90% CI 1-80), respectively. Despite the small mathematical differences between the analyses, the overall effect in both was a minimal increase in evacetrapib exposure. Of 35 adverse events reported during the study, 4 (11.4%) were considered to be treatment-related, and most were mild in severity. CONCLUSION: The impact of increased gastric pH on evacetrapib pharmacokinetics would not be expected to be clinically relevant. The magnitude of change in pH did not affect the degree of the interaction.


Subject(s)
Anticholesteremic Agents/pharmacokinetics , Benzodiazepines/pharmacokinetics , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Gastric Acidity Determination , Adult , Benzodiazepines/adverse effects , Cross-Over Studies , Female , Humans , Male , Middle Aged
2.
Eur J Clin Pharmacol ; 72(5): 563-72, 2016 May.
Article in English | MEDLINE | ID: mdl-26857125

ABSTRACT

PURPOSE: The aim of this study is to investigate the effect of hepatic or renal impairment on the pharmacokinetics of a single 130-mg evacetrapib dose. METHODS: Two open-label, parallel-design studies in males and females with normal hepatic function or Child-Pugh mild, moderate, or severe hepatic impairment, or with normal renal function or severe renal impairment. Non-compartmental pharmacokinetic parameters were estimated from plasma concentration-time data. Evacetrapib safety and tolerability were assessed. RESULTS: Pharmacokinetic parameter estimates were comparable between controls and mildly hepatically impaired subjects. Geometric mean area under the concentration-time curve (AUC) was greater, half-life (t1/2) was longer, and maximum concentration (Cmax) was lower in subjects with moderate and severe hepatic impairment than in controls. Apparent clearance (CL/F) did not differ between controls and those with mild hepatic impairment, but CL/F decreased for moderate and severe impairment. Spearman correlation coefficient showed no relationship between CL/F and Child-Pugh score. In the renal study, AUC and t1/2 were similar between groups, while Cmax was 15 % lower in subjects with severe impairment. CL/F in severely renally impaired subjects differed by <6 % from that in controls. Spearman correlation coefficient showed no apparent relationship between CL/F and estimated creatinine clearance or glomerular filtration rate. Neither study noted changes in clinical laboratory parameters or clinically significant findings. Adverse event incidence was low, and all were mild or moderate in severity. CONCLUSION: Evacetrapib exposure did not differ between mild hepatic impairment and normal hepatic function, but increased along the progression from mild to moderate to severe hepatic impairment. Severe renal impairment did not affect evacetrapib exposure.


Subject(s)
Anticholesteremic Agents/pharmacokinetics , Benzodiazepines/pharmacokinetics , Liver Diseases/metabolism , Renal Insufficiency/metabolism , Adult , Aged , Anticholesteremic Agents/adverse effects , Anticholesteremic Agents/blood , Benzodiazepines/adverse effects , Benzodiazepines/blood , Female , Humans , Male , Middle Aged
3.
J Cardiovasc Pharmacol Ther ; 20(5): 483-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25736283

ABSTRACT

PURPOSE: To determine the effect of a high-fat meal on evacetrapib exposure at steady state in healthy participants. METHODS: This was a randomized, 2-period, 2-sequence, open-label, crossover study. Patients were randomly assigned to 1 of the 2 treatment sequences in which they received evacetrapib 130 mg/d for 10 days following a 10-hour fast each day or following a high-fat breakfast each day. Plasma samples collected through 24 hours were analyzed for evacetrapib concentrations and pharmacokinetic parameter estimates including area under the concentration-time curve during a dosing interval (AUCτ), maximum observed concentration (Cmax), and time of Cmax (tmax) were calculated. Pharmacodynamic parameters, including cholesteryl ester transfer protein (CETP) activity, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol, and triglycerides, were also assessed. RESULTS: A total of 34 males and 6 females, mean age 41.5 years and mean body mass index 26.6 kg/m(2), were enrolled. Statistical analysis showed AUCτ was 44% higher (90% confidence interval [CI]: 29%-62%) and Cmax was 51% higher (90% CI: 28%-79%) in the fed state than in the fasted state, indicating an effect of food. Consistent with higher evacetrapib exposure, changes in HDL-C, LDL-C, and CETP activity appeared to be greater in the fed state than in the fasted state. There were no notable changes in total cholesterol or triglycerides following administration in the fed and fasted states. The 130-mg doses of evacetrapib were well tolerated with and without food. CONCLUSION: A high-fat meal increased evacetrapib mean exposure at steady state by 44% in healthy participants.


Subject(s)
Anticholesteremic Agents/pharmacokinetics , Benzodiazepines/pharmacokinetics , Diet, High-Fat , Lipoproteins, HDL/drug effects , Lipoproteins, LDL/drug effects , Adult , Analysis of Variance , Anticholesteremic Agents/administration & dosage , Anticholesteremic Agents/adverse effects , Anticholesteremic Agents/blood , Benzodiazepines/administration & dosage , Benzodiazepines/adverse effects , Benzodiazepines/blood , Cross-Over Studies , Female , Humans , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...