Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 12(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35953941

ABSTRACT

The present study evaluated the individual and combined effects of coated and uncoated phytase on broiler performance, tibia characteristics, and residual phytate phosphorus (P) in manure. Two repeated studies were conducted using 240-day-old Cobb 500 by-product male broilers per trial. For each trial, birds were assigned to four treatments with four replicate battery cages per treatment (60 birds/trt) and grown for 21 days. Treatments included: (1) negative control (NC), (2) NC + 1000 phytase units (FTU) coated phytase (C), (3) NC + 1000 FTU uncoated phytase (U), and (4) NC + 500 FTU coated + 500 FTU uncoated phytase (CU). Data were analyzed with a one-way ANOVA and means were separated using Tukey's HSD. In the pooled data for both trials, all treatments with dietary phytase had a higher body weight (BW) and feed consumption (FC) than the NC on day 21 (p < 0.05). Similarly, a six-point reduction was observed for day 1 to 21 feed conversion (FCR) for U and CU (p < 0.05). All treatments with phytase inclusion differed from the NC in every evaluated parameter for bone mineralization (p < 0.05) and had significantly lower fecal phytate P concentrations compared to the NC (p < 0.05). Overall, bird performance was essentially unaffected by phytase form, indicating that combining phytase forms does not appear to offer any advantage to the evaluated parameters from day 1 to 21.

2.
Animals (Basel) ; 11(6)2021 May 23.
Article in English | MEDLINE | ID: mdl-34071014

ABSTRACT

Two trials were conducted to determine feed color effects on broiler performance. A completely randomized design was used. Trial 1 included four treatments: control (complete broiler starter diet), red, green, and blue; and Trial 2 included four treatments: control, orange, yellow, and purple. Each trial had 4 treatments with 4 replicates (60 birds/treatment) fed to 240 male Cobb 500 broilers during a 21 d grow out. Data were analyzed using the GLM procedure. In Trial 1, there were no treatment effects on average body weight, body weight gain, and feed consumption (p > 0.05). Adjusted feed conversion for control (1.23) was less than red (1.27; p = 0.001) and green (1.26; p = 0.009), with blue (1.25; p = 0.056) tending to be different during the experimental period. In Trial 2, there were no treatment effects on average body weight, feed consumption, and adjusted feed conversion during this study (p > 0.05). Body weight gain between d 1 to 14 for purple (490.78 g/bird) was more than orange (467 g/bird; p = 0.013) and yellow (461 g/bird; p= 0.004), with control (474 g/bird; p = 0.052) tending to be different. Results indicate that these feed colors had some, albeit limited, influence on broiler performance parameters.

3.
Mol Aspects Med ; 76: 100924, 2020 12.
Article in English | MEDLINE | ID: mdl-33187725

ABSTRACT

Inflammasomes are large cytosolic multiprotein complexes assembled in response to infection and cellular stress, and are crucial for the activation of inflammatory caspases and the subsequent processing and release of pro-inflammatory mediators. While caspase-1 is activated within the canonical inflammasome, the related caspase-4 (also known as caspase-11 in mice) and caspase-5 are activated within the non-canonical inflammasome upon sensing of cytosolic lipopolysaccharide (LPS) from Gram-negative bacteria. However, the consequences of canonical and non-canonical inflammasome activation are similar. Caspase-1 promotes the processing and release of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-18 and the release of danger signals, as well as a lytic form of cell death called pyroptosis, whereas caspase-4, caspase-5 and caspase-11 directly promote pyroptosis through cleavage of the pore-forming protein gasdermin D (GSDMD), and trigger a secondary activation of the canonical NLRP3 inflammasome for cytokine release. Since the presence of the non-canonical inflammasome activator LPS leads to endotoxemia and sepsis, non-canonical inflammasome activation and regulation has important clinical ramifications. Here we discuss the mechanism of non-canonical inflammasome activation, mechanisms regulating its activity and its contribution to health and disease.


Subject(s)
Inflammasomes , Pyroptosis , Animals , Caspases , Humans , Inflammation Mediators , Lipopolysaccharides , Mice
4.
Animals (Basel) ; 10(1)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963195

ABSTRACT

This research study was conducted to determine the effects of dietary supplementation of kudzu leaf meal (KLM) and alfalfa meal (AM) on broiler performance, carcass characteristics, and organ parameters. Kudzu leaf meal and AM were added at rates of 6% and 7.3%, respectively, to a complete broiler starter diet. Three treatments (control (complete broiler starter diet), KLM supplementation; and AM supplementation) with four replicates were fed to 217 male broilers over a 21 d battery cage grow out. Data were analyzed as a completely randomized design with battery cage representing the experimental unit. Birds on KLM and AM had a lower average body weight, lower cumulative feed consumption, and a higher adjusted feed conversion than control (p < 0.05). Additionally, there were observed treatment effects on whole breast weight (p = 0.0010), with control being higher than both treated diets. Minimal treatment effects were observed for organ parameters. Furthermore, there were no observed treatment differences for mortality (p > 0.05). Although broilers on KLM did not perform as well as those in the control group, these results are indicative that kudzu is safe to use in poultry production and has a high potential as a protein supplement in tropical regions with a low availability of commercial protein feedstuffs.

5.
Arterioscler Thromb Vasc Biol ; 37(10): 1840-1848, 2017 10.
Article in English | MEDLINE | ID: mdl-28798141

ABSTRACT

OBJECTIVE: Despite the early promising results of 18F-fluorodeoxyglucose positron emission tomography for assessment of vessel wall inflammation, its accuracy in prospective identification of vulnerable plaques has remained limited. Additionally, previous studies have indicated that 18F-fluorodeoxyglucose uptake alone may not allow for accurate identification of specific macrophage activation states. We aimed to determine whether combined measurement of glucose and glutamine accumulation-the 2 most important bioenergetic substrates for macrophages-improves the distinction of macrophage inflammatory states and can be utilized to image atherosclerosis. APPROACH AND RESULTS: Murine peritoneal macrophages (MΦ) were activated ex vivo into proinflammatory states with either lipopolysaccharide (MΦLPS) or interferon-γ+tumor necrosis factor-α (MΦIFN-γ+TNF-α). An alternative polarization phenotype was induced with interleukin-4 (MΦIL-4). The pronounced increase in 2-deoxyglucose uptake distinguishes MΦLPS from MΦIFN-γ+TNF-α, MΦIL-4, and unstimulated macrophages (MΦ0). Despite having comparable levels of 2-deoxyglucose accumulation, MΦIL-4 can be distinguished from both MΦIFN-γ+TNF-α and MΦ0 based on the enhanced glutamine accumulation, which was associated with increased expression of a glutamine transporter, Slc1a5. Ex vivo autoradiography experiments demonstrated distinct and heterogenous patterns of 18F-fluorodeoxyglucose and 14C-glutamine accumulation in atherosclerotic lesions of low-density lipoprotein receptor-null mice fed a high-fat diet. CONCLUSIONS: Combined assessment of glutamine and 2-deoxyglucose accumulation improves the ex vivo identification of macrophage activation states. Combined ex vivo metabolic imaging demonstrates heterogenous and distinct patterns of substrate accumulation in atherosclerotic lesions. Further studies are required to define the in vivo significance of glutamine uptake in atherosclerosis and its potential application in identification of vulnerable plaques.


Subject(s)
Atherosclerosis/diagnostic imaging , Deoxyglucose/metabolism , Fluorodeoxyglucose F18 , Glutamine/metabolism , Macrophages/metabolism , Plaque, Atherosclerotic/diagnostic imaging , Positron-Emission Tomography , Animals , Aorta/diagnostic imaging , Aorta/metabolism , Atherosclerosis/metabolism , Autoradiography , Mice , Plaque, Atherosclerotic/metabolism
6.
Radiology ; 283(1): 87-97, 2017 04.
Article in English | MEDLINE | ID: mdl-27849433

ABSTRACT

Purpose To determine the divergence of immunometabolic phenotypes of macrophages stimulated with macrophage colony-stimulating factor (M-CSF) and granulocyte-M-CSF (GM-CSF) and its implications for fluorine 18 (18F) fluorodeoxyglucose (FDG) imaging of atherosclerosis. Materials and Methods This study was approved by the animal care committee. Uptake of 2-deoxyglucose and various indexes of oxidative and glycolytic metabolism were evaluated in nonactivated murine peritoneal macrophages (MΦ0) and macrophages stimulated with M-CSF (MΦM-CSF) or GM-CSF (MΦGM-CSF). Intracellular glucose flux was measured by using stable isotope tracing of glycolytic and tricyclic acid intermediary metabolites. 18F-FDG uptake was evaluated in murine atherosclerotic aortas after stimulation with M-CSF or GM-CSF by using quantitative autoradiography. Results Despite inducing distinct activation states, GM-CSF and M-CSF stimulated progressive but similar levels of increased 2-deoxyglucose uptake in macrophages that reached up to sixfold compared with MΦ0. The expression of glucose transporters, oxidative metabolism, and mitochondrial biogenesis were induced to similar levels in MΦM-CSF and MΦGM-CSF. Unexpectedly, there was a 1.7-fold increase in extracellular acidification rate, a 1.4-fold increase in lactate production, and overexpression of several critical glycolytic enzymes in MΦM-CSF compared with MΦGM-CSF with associated increased glucose flux through glycolytic pathway. Quantitative autoradiography demonstrated a 1.6-fold induction of 18F-FDG uptake in murine atherosclerotic plaques by both M-CSF and GM-CSF. Conclusion The proinflammatory and inflammation-resolving activation states of macrophages induced by GM-CSF and M-CSF in either cell culture or atherosclerotic plaques may not be distinguishable by the assessment of glucose uptake. © RSNA, 2016 Online supplemental material is available for this article.


Subject(s)
Fluorodeoxyglucose F18 , Glucose/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Inflammation/diagnostic imaging , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/metabolism , Positron-Emission Tomography , Animals , Cell Differentiation/physiology , Cells, Cultured , Inflammation/metabolism , Mice , Radiopharmaceuticals
7.
Antioxid Redox Signal ; 25(15): 816-835, 2016 11 20.
Article in English | MEDLINE | ID: mdl-27288099

ABSTRACT

SIGNIFICANCE: Monocyte and macrophage dysfunction plays a critical role in a wide range of inflammatory disease processes, including obesity, impaired wound healing diabetic complications, and atherosclerosis. Emerging evidence suggests that the earliest events in monocyte or macrophage dysregulation include elevated reactive oxygen species production, thiol modifications, and disruption of redox-sensitive signaling pathways. This review focuses on the current state of research in thiol redox signaling in monocytes and macrophages, including (i) the molecular mechanisms by which reversible protein-S-glutathionylation occurs, (ii) the identification of bona fide S-glutathionylated proteins that occur under physiological conditions, and (iii) how disruptions of thiol redox signaling affect monocyte and macrophage functions and contribute to atherosclerosis. Recent Advances: Recent advances in redox biochemistry and biology as well as redox proteomic techniques have led to the identification of many new thiol redox-regulated proteins and pathways. In addition, major advances have been made in expanding the list of S-glutathionylated proteins and assessing the role that protein-S-glutathionylation and S-glutathionylation-regulating enzymes play in monocyte and macrophage functions, including monocyte transmigration, macrophage polarization, foam cell formation, and macrophage cell death. CRITICAL ISSUES: Protein-S-glutathionylation/deglutathionylation in monocytes and macrophages has emerged as a new and important signaling paradigm, which provides a molecular basis for the well-established relationship between metabolic disorders, oxidative stress, and cardiovascular diseases. FUTURE DIRECTIONS: The identification of specific S-glutathionylated proteins as well as the mechanisms that control this post-translational protein modification in monocytes and macrophages will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis and other metabolic diseases. Antioxid. Redox Signal. 25, 816-835.


Subject(s)
Macrophages/metabolism , Monocytes/metabolism , Oxidation-Reduction , Proteins/metabolism , Signal Transduction , Sulfhydryl Compounds/metabolism , Animals , Atherosclerosis/etiology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Glutathione/metabolism , Humans , Mitochondria/metabolism , Oxidative Stress , Protein Processing, Post-Translational , Reactive Oxygen Species/metabolism
8.
Antioxid Redox Signal ; 25(15): 836-851, 2016 11 20.
Article in English | MEDLINE | ID: mdl-26984580

ABSTRACT

AIMS: Protein S-glutathionylation, the formation of a mixed disulfide between glutathione and protein thiols, is an oxidative modification that has emerged as a new signaling paradigm, potentially linking oxidative stress to chronic inflammation associated with heart disease, diabetes, cancer, lung disease, and aging. Using a novel, highly sensitive, and selective proteomic approach to identify S-glutathionylated proteins, we tested the hypothesis that monocytes and macrophages sense changes in their microenvironment and respond to metabolic stress by altering their protein thiol S-glutathionylation status. RESULTS: We identified over 130 S-glutathionylated proteins, which were associated with a variety of cellular functions, including metabolism, transcription and translation, protein folding, free radical scavenging, cell motility, and cell death. Over 90% of S-glutathionylated proteins identified in metabolically stressed THP-1 monocytes were also found in hydrogen peroxide (H2O2)-treated cells, suggesting that H2O2 mediates metabolic stress-induced protein S-glutathionylation in monocytes and macrophages. We validated our findings in mouse peritoneal macrophages isolated from both healthy and dyslipidemic atherosclerotic mice and found that 52% of the S-glutathionylated proteins found in THP-1 monocytes were also identified in vivo. Changes in macrophage protein S-glutathionylation induced by dyslipidemia were sexually dimorphic. INNOVATION: We provide a novel mechanistic link between metabolic (and thiol oxidative) stress, macrophage dysfunction, and chronic inflammatory diseases associated with metabolic disorders. CONCLUSION: Our data support the concept that changes in the extracellular metabolic microenvironment induce S-glutathionylation of proteins central to macrophage metabolism and a wide array of cellular signaling pathways and functions, which in turn initiate and promote functional and phenotypic changes in macrophages. Antioxid. Redox Signal. 25, 836-851.


Subject(s)
Cues , Glutathione/metabolism , Macrophages/metabolism , Protein Processing, Post-Translational , Animals , Atherosclerosis/etiology , Atherosclerosis/immunology , Atherosclerosis/metabolism , Biomarkers , Cell Line , Computational Biology/methods , Extracellular Space/immunology , Extracellular Space/metabolism , Female , Gene Expression , Humans , Hydrogen Peroxide/metabolism , Macrophages/immunology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Knockout , Oxidative Stress , Protein Interaction Mapping , Protein Interaction Maps , Staining and Labeling , Stress, Physiological/genetics
9.
Article in English | MEDLINE | ID: mdl-24625568

ABSTRACT

Xiphophorus fishes are comprised of 26 known species. Interspecies hybridization between select species has been utilized to produce experimental models to study melanoma development. Xiphophorus melanoma induction protocols utilize ultraviolet light (UVB) to induce DNA damage and associated downstream tumorigenesis. However, the impact of induced stress caused by the UVB treatment of the experimental animals undergoing tumor induction protocols has not been assessed. Stress is an adaptive physiological response to excessive or unpredictable environmental stimuli. The stress response in fishes may be measured by an assay of cortisol released into the water. Here, we present results from investigations of stress response during an experimental treatment and UVB exposure in Xiphophorus maculatus Jp 163 B, Xiphophorus couchianus, and F1 interspecies hybrids produced from the mating X. maculatus Jp 163 B×X. couchianus. Overall, cortisol release rates for males and females after UVB exposure showed no statistical differences. At lower UVB doses (8 and 16kJ/m(2)), X. couchianus exhibited 2 fold higher levels of DNA damage then either X. maculatus or the F1 hybrid. However, based on the cortisol release rates, none of the fish types tested induced a primary stress response at the UVB lower doses (8 and 16kJ/m(2)). In contrast, at a very high UVB dose (32kJ/m(2)) both X. maculatus and the F1 hybrid showed a 5 fold increase in the cortisol release rate. To determine the effect of pigmentation on UVB induced stress, wild type and albino Xiphophorus hellerii were exposed to UVB (32kJ/m(2)). Albino X. hellerii exhibited 3.7 fold increase in the cortisol release while wild type X. hellerii did not exhibit a significant cortisol response to UVB. Overall, the data suggest the rather low UVB doses often employed in tumor induction protocols do not induce a primary stress response in Xiphophorus fishes.


Subject(s)
Cyprinodontiformes/metabolism , Hydrocortisone/metabolism , Ultraviolet Rays/adverse effects , Animals , Cyprinodontiformes/genetics , DNA Damage , Female , Male , Stress, Psychological/metabolism
10.
Article in English | MEDLINE | ID: mdl-24556253

ABSTRACT

Xiphophorus fish and interspecies hybrids represent long-standing models to study the genetics underlying spontaneous and induced tumorigenesis. The recent release of the Xiphophorus maculatus genome sequence will allow global genetic regulation studies of genes involved in the inherited susceptibility to UVB-induced melanoma within select backcross hybrids. As a first step toward this goal, we report results of an RNA-Seq approach to identify genes and pathways showing modulated transcription within the skin of X. maculatus Jp 163 B upon UVB exposure. X. maculatus Jp 163 B were exposed to various doses of UVB followed by RNA-Seq analysis at each dose to investigate overall gene expression in each sample. A total of 357 genes with a minimum expression change of 4-fold (p-adj<0.05) were identified as responsive to UVB. The molecular genetic response of Xiphophorus skin to UVB exposure permitted assessment of; (1) the basal expression level of each transcript for each skin sample, (2) the changes in expression levels for each gene in the transcriptome upon exposure to increasing doses of UVB, and (3) clusters of genes that exhibit similar patterns of change in expression upon UVB exposure. These data provide a foundation for understanding the molecular genetic response of fish skin to UVB exposure.


Subject(s)
Cyprinodontiformes/genetics , Gene Expression/radiation effects , Skin/radiation effects , Ultraviolet Rays/adverse effects , Animals , Base Sequence , Male , Molecular Sequence Data , Sequence Analysis, RNA , Skin/metabolism
11.
Article in English | MEDLINE | ID: mdl-21619941

ABSTRACT

Research investigating telomere lengths and telomerase expression in vertebrates has progressively become important due to the association of these two biological endpoints with cellular aging and cancer in humans. Studies that rely upon the traditional use of laboratory mice have been faced with limitations largely due to inbred mice possessing large telomeres and ubiquitous expression of telomerase. Recently, a number of small fish species have been shown to provide potentially informative models for examining the role of telomeres and telomerase within intact vertebrate animals. Xiphophorus fishes represent a new world live-bearing genus that has not previously been assessed for telomere length or telomerase expression. To add to the knowledge base of telomere and telomerase biology in vertebrates we assessed telomere length and telomerase expression among several species of Xiphophorus. The telomere lengths in several organs (gill, brain, eyes, testis, ovary and liver) in three species (Xiphophorus hellerii, Xiphophorus maculatus, Xiphophorus couchianus) and also in F(1) interspecies hybrids were approximately 2-6 kb. This size was consistent within the same organs of the same species, as well as between species and F(1) hybrids. Despite possessing relatively short telomere lengths compared to humans, the consistency of size among Xiphophorus species and organs may allow experimental detection of telomere shortening. The relative expression of telomerase reverse transcriptase (TERT) was determined by quantitative real-time PCR. Expression levels of TERT was measured in seven organs (ovary, testis, liver, gill, brain, heart, skin) from X. maculatus, X. hellerii and in control and ultraviolet light (UVB) exposed skin samples from X. maculatus, X. hellerii, and F(1) interspecies hybrids. TERT gene expression was significantly higher in ovary and testis, while all other organs showed low relative TERT expression. Detectable increases in TERT expression were found in skin samples upon UVB exposure. Our findings suggest that Xiphophorus may serve as a suitable model for future studies investigating the association of telomere length and telomerase expression in regard to aging and disease.


Subject(s)
Cyprinodontiformes/genetics , Telomerase/metabolism , Telomere/metabolism , Amino Acid Sequence , Animal Structures/metabolism , Animal Structures/radiation effects , Animals , Blotting, Southern/methods , Chimera/genetics , Chimera/metabolism , Cyprinodontiformes/metabolism , Female , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation , Male , Molecular Sequence Data , Real-Time Polymerase Chain Reaction , Sequence Alignment , Skin/radiation effects , Species Specificity , Telomerase/genetics , Telomere/genetics , Telomere Shortening , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...