Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199714

ABSTRACT

This study investigated the polymer film composite of polyvinyl alcohol (PVA), trichlorethylene (TCE) and cresol red (CR) dye irradiated with gamma (γ) rays for potential application as radiation dosimetry. The film was prepared via the solvent-casting method with varying concentrations of TCE. Film samples were exposed to radiation from a γ-rays radiation source of 60Cobalt isotope. Color changes before and after γ-rays irradiation were observed, and the optical properties of the polymer films were investigated by spectrophotometry. Results show that increasing the radiation dose physically changed the color of the polymer film, from purple (pH > 8.8) without radiation (0 kGy) to yellow (almost transparent) (2.8 < pH < 7.2) at the highest dose (12 kGy). The concentration of acid formed due to irradiation increased with the increase in irradiation doses and at higher TCE content. The critical doses of PVA-TCE composites decreased linearly with the increase of TCE composition, facilitating an easy calibration process. The dose response at 438 nm increased exponentially with increasing radiation dose, but showed an opposite trend at the 575 nm band. An increase in the TCA concentration indicated a decrease in the absorption edge and an increase in activation energy, but both decreased for all TCE concentrations at higher doses. The energy gap for the direct and the indirect transitions decreased with increasing TCE concentration and γ-rays radiation dose. The results of this study demonstrated the potential application of PVA-TCE-CR polymer film as γ-rays irradiation dosimetry in a useful dose range of 0-12 kGy.

2.
Polymers (Basel) ; 13(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201192

ABSTRACT

The increasing rate of oil and gas production has contributed to a release of oil/water emulsion or mixtures to the environment, becoming a pressing issue. At the same time, pollution of the toxic cigarette butt has also become a growing concern. This study explored utilization of cigarette butt waste as a source of cellulose acetate-based (CA) polymer to develop a phase inverted membrane for treatment of oil/water emulsion and compare it with commercial polyvinylidene difluoride (PVDF) and polysulfone (PSF). Results show that the CA-based membrane from waste cigarette butt offers an eco-friendly material without compromising the separation efficiency, with a pore size range suitable for oil/water emulsion filtration with the rejection of >94.0%. The CA membrane poses good structural property similar to the established PVDF and PSF membranes with equally asymmetric morphology. It also poses hydrophilicity properties with a contact angle of 74.5°, lower than both PVDF and PSF membranes. The pore size of CA demonstrates that the CA is within the microfiltration range with a mean flow pore size of 0.17 µm. The developed CA membrane shows a promising oil/water emulsion permeability of 180 L m-2 h-1 bar-1 after five filtration cycles. However, it still suffers a high degree of irreversible fouling (>90.0%), suggesting potential future improvements in terms of membrane fouling management. Overall, this study demonstrates a sustainable approach to addressing oil/water emulsion pollution treated CA membrane from cigarette butt waste.

3.
Membranes (Basel) ; 11(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069360

ABSTRACT

Membrane technology is one of reliable options for treatment of oil/water emulsion. It is highly attractive because of its effectiveness in separating fine oil droplets of <2 µm sizes, which is highly challenging for other processes. However, the progress for its widespread implementations is still highly restricted by membrane fouling. Most of the earlier studies have demonstrated the promise of achieving more sustained filtration via membrane material developments. This study addresses issues beyond membrane development by assessing the impact of membrane material (blend of polysulfone, PSF and polyethylene glycol, PEG), operational pressure, and crude oil concentration on the filtration performance of oil/water emulsion. The filtration data were then used to project the pumping energy for a full-scale system. Results show that fouling resistant membrane offered high oil/water emulsion permeability, which translated into a low energy consumption. The oil/water emulsion permeability was improved by three-fold from 45 ± 0 to 139 ± 1 L/(m2 h bar) for PSF/PEG-0 membrane in comparison to the most optimum one of PSF/PEG-60. It corresponded to an energy saving of up to ~66%. The pumping energy could further be reduced from 27.0 to 7.6 Wh/m3 by operation under ultra-low pressure from 0.2 to 0.05 bar. Sustainable permeability could be achieved when treating 1000 ppm oil/water emulsion, but severe membrane fouling was observed when treating emulsion containing crude oils of >3000 ppm to a point of no flux.

4.
Materials (Basel) ; 14(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070195

ABSTRACT

This paper introduces a new spark plasma sintering technique that is able to order crystalline anisotropy by in-series/in situ DC electric coupled magnetic field. The process control parameters have been investigated on the production of anisotropic BaFe12O19 magnets based on resulted remanence (Mr). Sintering holding time (H.T.), cooling rate (C.R.), pressure (P), and sintering temperature (S.T.) are optimized by Taguchi with L9 orthogonal array (OA). The remanent magnetization of nanocrystalline BaFe12O19 in parallel (Mrǁ) and perpendicular (MrꞱ) to the applied magnetic field was regarded as a measure of performance. The Taguchi study calculated optimum process parameters, which significantly improved the sintering process based on the confirmation tests of BaFe12O19 anisotropy. The magnetic properties in terms of Mrǁ and MrꞱ were greatly affected by sintering temperature and pressure according to ANOVA results. In addition, regression models were developed for predicting the Mrǁ as well as MrꞱ respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...