Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 13: 1041934, 2022.
Article in English | MEDLINE | ID: mdl-36582611

ABSTRACT

Objective: Gait dysfunction is one of the most difficult motor signs to treat in patients with Parkinson's disease (PD). Understanding its pathophysiology and developing more effective therapies for parkinsonian gait dysfunction will require preclinical studies that can quantitatively and objectively assess the spatial and temporal features of gait. Design: We developed a novel system for measuring volitional, naturalistic gait patterns in non-human primates, and then applied the approach to characterize the progression of parkinsonian gait dysfunction across a sequence of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatments that allowed for intrasubject comparisons across mild, moderate, and severe stages. Results: Parkinsonian gait dysfunction was characterized across treatment levels by a slower stride speed, increased time in both the stance and swing phase of the stride cycle, and decreased cadence that progressively worsened with overall parkinsonian severity. In contrast, decreased stride length occurred most notably in the moderate to severe parkinsonian state. Conclusion: The results suggest that mild parkinsonism in the primate model of PD starts with temporal gait deficits, whereas spatial gait deficits manifest after reaching a more severe parkinsonian state overall. This study provides important context for preclinical studies in non-human primates studying the neurophysiology of and treatments for parkinsonian gait.

2.
J Neural Eng ; 18(4)2021 05 13.
Article in English | MEDLINE | ID: mdl-33906174

ABSTRACT

Objective.The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson's disease.Approach.Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1-4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12-30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR).Results.Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1-4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1-4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode-tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power.Significance.These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Prostheses and Implants
3.
R Soc Open Sci ; 2(12): 150432, 2015 Dec.
Article in English | MEDLINE | ID: mdl-27019727

ABSTRACT

Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured 'coo' call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral-temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call's fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized.

SELECTION OF CITATIONS
SEARCH DETAIL
...