Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anal Toxicol ; 46(4): 343-349, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35265983

ABSTRACT

Among the abundance of cannabinoids identified in cannabis, the active parent drug, Δ9-tetrahydrocannabinol (Δ9-THC), and its oxidized metabolite, 11-nor-9-carboxy-Δ9-THC (Δ9-THCCOOH), are attractive analytical targets to detect cannabis use. More recently, confirmation of these analytes may be hindered by a related interfering compound. Forensic toxicology laboratories attribute this phenomenon to an increase in cases containing Δ8-tetrahydrocannabinol (Δ8-THC) and 11-nor-9-carboxy-Δ8-THC (Δ8-THCCOOH). It is technically challenging to chromatographically resolve and accurately quantify Δ8- and Δ9-THC and THCCOOH in toxicology specimens due to their structural resemblance. This study describes a validated method to resolve and quantify active Δ8-THC and Δ9-THC in blood while qualitatively confirming the inactive metabolites Δ8-THCCOOH and Δ9-THCCOOH in blood and urine. Analytes are extracted and concentrated by solid-phase extraction and analyzed by liquid chromatography--electrospray ionization tandem mass spectrometry, which is amenable to modern toxicology laboratory routine workflows. This procedure offers a clear solution to untangling mixtures of these isomers, particularly in cases where Δ8-THC and its metabolite are the sole or dominant form.


Subject(s)
Cannabinoids , Dronabinol , Cannabinoids/analysis , Chromatography, Liquid/methods , Dronabinol/analysis , Solid Phase Extraction , Tandem Mass Spectrometry/methods
2.
J Anal Toxicol ; 38(7): 456-61, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24951536

ABSTRACT

In order to achieve chromatographic separation, urine samples shown to be initially positive for amphetamines and methamphetamines in US Department of Defense immunoassays are derivatized with R-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride (R-(-)-MTPA) prior to gas chromatography-electron impact-mass spectrometry (GC-EI-MS) analysis. Phentermine, a member of the phenethylamine class of drugs and a common appetite suppressant, interferes with GC-EI-MS assays of R-(-)-MTPA-derivatized d-amphetamine, degrading the chromatography of the internal standard and analyte ions and skewing concentration calculations. Additionally, when specimens with high concentrations of l-methamphetamine are derivatized with R-(-)-MTPA, signal peaks have the potential to be misidentified by integration software as d-methamphetamine. We have found that replacing R-(-) MTPA with (S)-(+)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride reduces phentermine interference problems related to internal standard chromatography, reduces the possibility of concentrated l-methamphetamine peaks being misidentified by integration software, improves resolution of d-methamphetamine in the presence of high l-methamphetamine concentrations, and is a cost-neutral change that can be applied to current amphetamines GC-EI-MS methods without the need for method modification.


Subject(s)
Amphetamines/urine , Gas Chromatography-Mass Spectrometry/methods , Phentermine/urine , Phenylacetates/chemistry , Substance Abuse Detection/methods , Amphetamines/chemistry , Humans , Methamphetamine/chemistry , Methamphetamine/urine , Military Personnel , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...