Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 610(7931): 366-372, 2022 10.
Article in English | MEDLINE | ID: mdl-36198801

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic, aggressive cancer that frequently progresses and spreads by metastasis to the liver1. Cancer-associated fibroblasts, the extracellular matrix and type I collagen (Col I) support2,3 or restrain the progression of PDAC and may impede blood supply and nutrient availability4. The dichotomous role of the stroma in PDAC, and the mechanisms through which it influences patient survival and enables desmoplastic cancers to escape nutrient limitation, remain poorly understood. Here we show that matrix-metalloprotease-cleaved Col I (cCol I) and intact Col I (iCol I) exert opposing effects on PDAC bioenergetics, macropinocytosis, tumour growth and metastasis. Whereas cCol I activates discoidin domain receptor 1 (DDR1)-NF-κB-p62-NRF2 signalling to promote the growth of PDAC, iCol I triggers the degradation of DDR1 and restrains the growth of PDAC. Patients whose tumours are enriched for iCol I and express low levels of DDR1 and NRF2 have improved median survival compared to those whose tumours have high levels of cCol I, DDR1 and NRF2. Inhibition of the DDR1-stimulated expression of NF-κB or mitochondrial biogenesis blocks tumorigenesis in wild-type mice, but not in mice that express MMP-resistant Col I. The diverse effects of the tumour stroma on the growth and metastasis of PDAC and on the survival of patients are mediated through the Col I-DDR1-NF-κB-NRF2 mitochondrial biogenesis pathway, and targeting components of this pathway could provide therapeutic opportunities.


Subject(s)
Carcinoma, Pancreatic Ductal , Collagen Type I , Discoidin Domain Receptor 1 , Signal Transduction , Animals , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Collagen Type I/metabolism , Discoidin Domain Receptor 1/metabolism , Matrix Metalloproteinases/metabolism , Mice , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Survival Rate
3.
Radiat Res ; 192(2): 145-158, 2019 08.
Article in English | MEDLINE | ID: mdl-31166846

ABSTRACT

While cutaneous radiation injury (CRI) is generally referenced as a consequence of a nuclear attack, it can also be caused by less dangerous events such as the use of dirty bombs, industrial radiological accidents, or accidental overexposure of beta (ß) particle or gamma (γ) radiation sources in medical procedures. Although the gross clinical consequences of these injuries have been well documented, relatively little is known about the molecular changes underlying the progression of pathology. Here we describe a porcine model of cutaneous radiation injury after skin was exposed to strontium-90 b particle at doses of 16-42 Gy and characterize the anatomical and molecular changes over 70 days. The results show that irradiated sites displayed dosedependent increases in erythema and moist desquamation that peaked between days 35 and 42. Dose-dependent histopathological changes were observed, with higher doses exhibiting increased inflammation and epidermal hyperplasia beyond day 35. Furthermore, immunohistochemistry showed that exposure to 37 Gy ß-particle radiation decreased epidermal cell proliferation and desmosomal junction proteins at day 70, suggesting compromised epidermal integrity. Metabolomic analysis of biopsies revealed dose- and time-dependent changes as high as 252-fold in several metabolites not previously linked to CRI. These alterations were seen in pathways reflecting protein degradation, oxidative stress, eicosanoid production, collagen matrix remodeling, mitochondrial stress, cell membrane composition and vascular disruption. Taken together, these data show that exposure to high doses of ß particle damaged the molecular processes underlying skin integrity to a greater extent and for a longer period of time than has been shown previously. These findings further understanding of radiation-induced skin injury and serve as a foundation for the development and testing of potential therapeutics to treat CRI.


Subject(s)
Beta Particles/adverse effects , Skin/injuries , Skin/radiation effects , Animals , Cell Proliferation/radiation effects , Dose-Response Relationship, Radiation , Female , Skin/metabolism , Skin/pathology , Swine , Transcriptome/radiation effects
4.
Mol Genet Metab ; 128(3): 228-235, 2019 11.
Article in English | MEDLINE | ID: mdl-31153822

ABSTRACT

BACKGROUND AND AIMS: The acute porphyrias are characterized by defects in heme synthesis, particularly in the liver. In some affected patients, there occurs a critical deficiency in a regulatory heme pool within hepatocytes that leads to up-regulation of 5-aminolevulinic acid [ALA] synthase-1, which is the first and normally rate-controlling enzyme in the pathway. In earlier work, we described defects in mitochondrial functions in cultured skin fibroblasts from patients with acute intermittent porphyria [AIP]. Others described defects in livers of murine models of AIP. Here, we explored mitochondrial energetics in peripheral blood mononuclear cells [PBMCs] and platelets in persons with AIP and hereditary coproporphyria [HCP]. Our hypotheses were that there are deficits in bioenergetic capacity in acute porphyrias and that subjects with more severe acute porphyria have more pronounced reductions in mitochondrial oxygen consumption rates [OCR]. METHODS: We studied 17 subjects with acute hepatic porphyrias, 14 with classical AIP, one with severe AIP due to homozygous deficiency of hydroxymethylbilane synthase [HMBS], 2 with HCP, and 5 non-porphyric controls. We collected peripheral blood, isolated PBMCs, which we assayed either immediately or after frozen storage [80C] for up to 14 days. Using Seahorse XF-24-3, we measured OCR in the presence of glucose + pyruvate under basal condition, and after additions of oligomycin, carbonylcyanide p-trifluoromethoxyphenylhydrazone [FCCP], and antimycin+rotenone. RESULTS: Most subjects [13/17, 76%] were female. Subjects with moderate/severe symptoms associated with acute porphyria had significantly lower basal and maximal-OCR than those with no/mild symptoms who were the same as controls. We observed significant inverse correlation between urinary porphobilinogen [PBG] excretion and OCR. The subject with homozygous AIP had a much lower-OCR than his asymptomatic parents. SUMMARY/CONCLUSIONS: Results support the hypothesis that active acute hepatic porphyria is characterized by a deficiency in mitochondrial function that is detectable in PBMCs, suggesting that limitations in electron transport and ATP production exist in such individuals.


Subject(s)
Coproporphyria, Hereditary/blood , Energy Metabolism , Mitochondria/metabolism , Mitochondria/pathology , Oxygen/metabolism , Adenosine Triphosphate/biosynthesis , Adult , Aged , Aged, 80 and over , Blood Platelets/metabolism , Blood Platelets/pathology , Coproporphyria, Hereditary/pathology , Electron Transport , Female , Heme/biosynthesis , Humans , Infant , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Pilot Projects , Porphyria, Acute Intermittent/blood , Porphyria, Acute Intermittent/pathology
5.
Cell Stress Chaperones ; 23(2): 189-194, 2018 03.
Article in English | MEDLINE | ID: mdl-28822083

ABSTRACT

Heat shock protein (HSP) 70 is an abundant cytosolic chaperone protein that is deficient in insulin-sensitive tissues in diabetes and unhealthy aging, and is considered a longevity target. It is also protective in neurological disease models. Using HSP70 purified from alfalfa and administered as an intranasal solution, we tested in whether the administration of Hsp70 to diet-induced diabetic mice would improve insulin sensitivity. Both the 10 and 40 µg given three times per week for 26 days significantly improved the response to insulin. The HSP70 was found to pass into the olfactory bulbs within 4-6 hours of a single dose. These results suggest that a relatively inexpensive, plentiful source of HSP70 administered in a simple, non-invasive manner, has therapeutic potential in diabetes.


Subject(s)
HSP70 Heat-Shock Proteins/administration & dosage , Insulin Resistance , Medicago sativa/chemistry , Administration, Intranasal , Animals , Diet, High-Fat , Fluorescent Dyes/metabolism , Glucose/metabolism , HSP70 Heat-Shock Proteins/pharmacology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...