Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 9(22): 7575-7590, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34665185

ABSTRACT

This work describes the preparation, characterization and functionalization with magnetic nanoparticles of a bone tissue-mimetic scaffold composed of collagen and hydroxyapatite obtained through a biomineralization process. Bone remodeling takes place over several weeks and the possibility to follow it in vivo in a quick and reliable way is still an outstanding issue. Therefore, this work aims to produce an implantable material that can be followed in vivo during bone regeneration by using the existing non-invasive imaging techniques (MRI). To this aim, suitably designed biocompatible SPIONs were linked to the hybrid scaffold using two different strategies, one involving naked SPIONs (nMNPs) and the other using coated and activated SPIONs (MNPs) exposing carboxylic acid functions allowing a covalent attachment between MNPs and collagen molecules. Physico-chemical characterization was carried out to investigate the morphology, crystallinity and stability of the functionalized materials followed by MRI analyses and evaluation of a radiotracer uptake ([99mTc]Tc-MDP). Cell proliferation assays in vitro were carried out to check the cytotoxicity and demonstrated no side effects due to the SPIONs. The achieved results demonstrated that the naked and coated SPIONs are more homogeneously distributed in the scaffold when incorporated during the synthesis process. This work demonstrated a suitable approach to develop a biomaterial for bone regeneration that allows the monitoring of the healing progress even for long-term follow-up studies.


Subject(s)
Bone Regeneration , Tissue Scaffolds , Bone and Bones/diagnostic imaging , Collagen , Durapatite
2.
J Mater Sci Mater Med ; 32(1): 3, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33471246

ABSTRACT

Biomaterial science increasingly seeks more biomimetic scaffolds that functionally augment the native bone tissue. In this paper, a new concept of a structural scaffold design is presented where the physiological multi-scale architecture is fully incorporated in a single-scaffold solution. Hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP) bioceramic scaffolds with different bioinspired porosity, mimicking the spongy and cortical bone tissue, were studied. In vitro experiments, looking at the mesenchymal stem cells behaviour, were conducted in a perfusion bioreactor that mimics the physiological conditions in terms of interstitial fluid flow and associated induced shear stress. All the biomaterials enhanced cell adhesion and cell viability. Cortical bone scaffolds, with an aligned architecture, induced an overexpression of several late stage genes involved in the process of osteogenic differentiation compared to the spongy bone scaffolds. This study reveals the exciting prospect of bioinspired porous designed ceramic scaffolds that combines both cortical and cancellous bone in a single ceramic bone graft. It is prospected that dual core shell scaffold could significantly modulate osteogenic processes, once implanted in patients, rapidly forming mature bone tissue at the tissue interface, followed by subsequent bone maturation in the inner spongy structure.


Subject(s)
Biocompatible Materials/chemistry , Bone and Bones/metabolism , Stem Cells/cytology , Adipose Tissue , Animals , Bioreactors , Calcium Phosphates/chemistry , Cell Differentiation , Cell Survival , Cells, Cultured , Ceramics/chemistry , Durapatite/chemistry , Extracellular Fluid , Humans , In Vitro Techniques , Mesenchymal Stem Cells/cytology , Microscopy, Electron, Scanning , Osteogenesis , Polymers/chemistry , Porosity , Powders , Tissue Scaffolds/chemistry
3.
Aging Clin Exp Res ; 33(4): 805-821, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31595428

ABSTRACT

The aging of the world population is increasingly claimed as an alarming situation, since an ever-raising number of persons in advanced age but still physically active is expected to suffer from invalidating and degenerative diseases. The impairment of the endogenous healing potential provoked by the aging requires the development of more effective and personalized therapies, based on new biomaterials and devices able to direct the cell fate to stimulate and sustain the regrowth of damaged or diseased tissues. To obtain satisfactory results, also in cases where the cell senescence, typical of the elderly, makes the regeneration process harder and longer, the new solutions have to possess excellent ability to mimic the physiological extracellular environment and thus exert biomimetic stimuli on stem cells. To this purpose, the "biomimetic concept" is today recognized as elective to fabricate bioactive and bioresorbable devices such as hybrid osteochondral scaffolds and bioactive bone cements closely resembling the natural hard tissues and with enhanced regenerative ability. The review will illustrate some recent results related to these new biomimetic materials developed for application in different districts of the musculoskeletal system, namely bony, osteochondral and periodontal regions, and the spine. Further, it will be shown how new bioactive and superparamagnetic calcium phosphate nanoparticles can give enhanced results in cardiac regeneration and cancer therapy. Since tissue regeneration will be a major demand in the incoming decades, the high potential of biomimetic materials and devices is promising to significantly increase the healing rate and improve the clinical outcomes even in aged patients.


Subject(s)
Biomimetic Materials , Tissue Scaffolds , Aged , Humans , Tissue Engineering
4.
Article in English | MEDLINE | ID: mdl-32793577

ABSTRACT

Tooth loss is a common consequence of a huge number of causes and can decrease the quality of humans' life. Tooth is a complex organ composed of soft connective tissues and mineralized tissues of which dentin is the most voluminous component whose formation is regulated by a very complex process displaying several similarities with osteogenesis. Calcium phosphates, in particular hydroxyapatite (HA), is the phase present in higher amount into the structure of dentin, characterized by microscopic longitudinal dentinal tubules. To address the challenge of dental tissue regeneration, here we propose a novel biomimetic approach, to design hybrid scaffolds resembling the physico-chemical features of the natural mineralized tissues, suitable to recreate an appropriate microenvironment that stimulates cell colonization and proliferation, therefore effective for improving regenerative approach in dental applications. Biomineralization is the adopted synthesis as a nature inspired process consisting in the nucleation of magnesium-doped-hydroxyapatite (MgHA) nanocrystals on the gelatin (Gel) matrix generating hybrid flakes (Gel/MgHA) featured by a Gel:MgHA weight ratio close to 20:80 and size of 50-70 µm. Chemical and topotactic constrains affect the formation of MgHA mineral phase on the organic template, generating quasi-amorphous MgHA as revealed by XRD analysis and Ca/P ratio lower than 1.67, resembling the chemical and biological features of the natural apatite. The Gel/MgHA was then merged into the polymeric blend made of chitosan (Chit) and Gel to obtain a 3D porous scaffold with polymers: MgHA weight ratio of 40:60 and featured by an aligned porous structure as obtained by controlled freeze-drying process. The overall composite shows a swelling ratio of about 15 times after 6 h in PBS. The chemical stability was assured by means of a dehydrothermal cross-linking treatment (DHT) keeping the degradation lower than 20% after 28 days, while cell adhesion and proliferation were evaluated using a mouse fibroblast cell line.

5.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580479

ABSTRACT

Many studies show how biomaterial properties like stiffness, mechanical stimulation and surface topography can influence cellular functions and direct stem cell differentiation. In this work, two different natural materials, gelatin (Gel) and cellulose nanofibrils (CNFs), were combined to design suitable 3D porous biocomposites for soft-tissue engineering. Gel was selected for its well-assessed high biomimicry that it shares with collagen, from which it derives, while the CNFs were chosen as structural reinforcement because of their exceptional mechanical properties and biocompatibility. Three different compositions of Gel and CNFs, i.e., with weight ratios of 75:25, 50:50 and 25:75, were studied. The biocomposites were morphologically characterized and their total- and macro- porosity assessed, proving their suitability for cell colonization. In general, the pores were larger and more isotropic in the biocomposites compared to the pure materials. The influence of freeze-casting and dehydrothermal treatment (DHT) on mechanical properties, the absorption ability and the shape retention were evaluated. Higher content of CNFs gave higher swelling, and this was attributed to the pore structure. Cross-linking between CNFs and Gel using DHT was confirmed. The Young's modulus increased significantly by adding the CNFs to Gel with a linear relationship with respect to the CNF amounts. Finally, the biocomposites were characterized in vitro by testing cell colonization and growth through a quantitative cell viability analysis performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, the cell viability analysis was performed by the means of a Live/Dead test with Human mesenchymal stem cells (hMSCs). All the biocomposites had higher cytocompatibility compared to the pure materials, Gel and CNFs.

6.
J Mater Sci Mater Med ; 30(12): 136, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31802234

ABSTRACT

Many medical-related scientific discoveries arise from trial-error patterns where the processes involved must be refined and modified continuously before any product could be able to reach the final costumers. One of the elements affecting negatively these processes is the inaccuracy of two-dimension (2D) standard culture systems, carried over in plastic plates or similar, in replicating complex environments and patterns. Consequently, animal tests are required to validate every in vitro finding, at the expenses of more funds and ethical issues. A possible solution relies in the implementation of three-dimension (3D) culture systems as a fitting gear between the 2D tests and in vivo tests, aiming to reduce the negative in vivo outcomes. These 3D structures are depending from the comprehension of the extracellular matrix (ECM) and the ability to replicate it in vitro. In this article a comparison of efficacies between these two culture systems was taken as subject, human mesenchymal stem cells (hMSCs) was utilized and a hybrid scaffold made by a blend of chitosan, gelatin and biomineralized gelatin was used for the 3D culture system.


Subject(s)
Cell Culture Techniques , Mesenchymal Stem Cells/physiology , Osteogenesis/physiology , Tissue Scaffolds , Biocompatible Materials , Cell Differentiation , Humans , Materials Testing
7.
Nanomedicine (Lond) ; 11(16): 2119-30, 2016 08.
Article in English | MEDLINE | ID: mdl-27463861

ABSTRACT

AIM: Synthesis of superparamagnetic hybrid nanobeads (MHNs) made of iron-substituted hydroxyapatite nanophase mineralizing a self-assembling alginate (Alg) matrix to be used as drug carriers, with ability of remote activation by magnetic signaling. MATERIALS & METHODS: Iron-doped apatite was heterogeneously nucleated on the self-assembling Alg matrix by a bioinspired mineralization process and MHNs are formed by a subsequent emulsification by oil-in-water technique. RESULTS: The obtained MHNs exhibited biomimetic composition, adequate swelling properties in physiological-like environment and superparamagnetic properties. The assembling of Alg induced the egg-like rearrangement of the mineralized composite that was then stabilized through cross-linking reaction with calcium ions. CONCLUSION: The new MHNs can be considered as a promising biocompatible and bio-resorbable drug delivery system with magnetic properties, thus opening to smart applications in nanomedicine.


Subject(s)
Alginates/chemistry , Drug Carriers/chemistry , Durapatite/chemistry , Iron/chemistry , Magnets/chemistry , Nanoparticles/chemistry , Calcium/chemistry , Drug Delivery Systems , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Nanoparticles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...