Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(50): e2211018119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36469764

ABSTRACT

Photoheterotrophic bacteria harvest light energy using either proton-pumping rhodopsins or bacteriochlorophyll (BChl)-based photosystems. The bacterium Sphingomonas glacialis AAP5 isolated from the alpine lake Gossenköllesee contains genes for both systems. Here, we show that BChl is expressed between 4°C and 22°C in the dark, whereas xanthorhodopsin is expressed only at temperatures below 16°C and in the presence of light. Thus, cells grown at low temperatures under a natural light-dark cycle contain both BChl-based photosystems and xanthorhodopsins with a nostoxanthin antenna. Flash photolysis measurements proved that both systems are photochemically active. The captured light energy is used for ATP synthesis and stimulates growth. Thus, S. glacialis AAP5 represents a chlorophototrophic and a retinalophototrophic organism. Our analyses suggest that simple xanthorhodopsin may be preferred by the cells under higher light and low temperatures, whereas larger BChl-based photosystems may perform better at lower light intensities. This indicates that the use of two systems for light harvesting may represent an evolutionary adaptation to the specific environmental conditions found in alpine lakes and other analogous ecosystems, allowing bacteria to alternate their light-harvesting machinery in response to large seasonal changes of irradiance and temperature.


Subject(s)
Bacteriochlorophylls , Lakes , Bacteriochlorophylls/chemistry , Lakes/analysis , Protons , Proton Pumps , Ecosystem , Bacterial Proteins/metabolism , Bacteria/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosynthesis
2.
Mol Microbiol ; 117(5): 1213-1226, 2022 05.
Article in English | MEDLINE | ID: mdl-35362616

ABSTRACT

C-di-GMP signaling can directly influence bacterial behavior by affecting the functionality of c-di-GMP-binding proteins. In addition, c-di-GMP can exert a global effect on gene transcription or translation, for example, via riboswitches or by binding to transcription factors. In this study, we investigated the effects of changes in intracellular c-di-GMP levels on gene expression and protein production in the opportunistic pathogen Pseudomonas aeruginosa. We induced c-di-GMP production via an ectopically introduced diguanylate cyclase and recorded the transcriptional, translational as well as proteomic profile of the cells. We demonstrate that rising levels of c-di-GMP under growth conditions otherwise characterized by low c-di-GMP levels caused a switch to a non-motile, auto-aggregative P. aeruginosa phenotype. This phenotypic switch became apparent before any c-di-GMP-dependent role on transcription, translation, or protein abundance was observed. Our results suggest that rising global c-di-GMP pools first affects the motility phenotype of P. aeruginosa by altering protein functionality and only then global gene transcription.


Subject(s)
Escherichia coli Proteins , Pseudomonas aeruginosa , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Proteomics , Pseudomonas aeruginosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...