Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 11(2): 171-183, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36484736

ABSTRACT

Vα24-invariant natural killer T cells (NKT) possess innate antitumor properties that can be exploited for cancer immunotherapy. We have shown previously that the CD62L+ central memory-like subset of these cells drives the in vivo antitumor activity of NKTs, but molecular mediators of NKT central memory differentiation remain unknown. Here, we demonstrate that relative to CD62L- cells, CD62L+ NKTs express a higher level of the gene encoding the Wnt/ß-catenin transcription factor lymphoid enhancer binding factor 1 (LEF1) and maintain active Wnt/ß-catenin signaling. CRISPR/Cas9-mediated LEF1 knockout reduced CD62L+ frequency after antigenic stimulation, whereas Wnt/ß-catenin activator Wnt3a ligand increased CD62L+ frequency. LEF1 overexpression promoted NKT expansion and limited exhaustion following serial tumor challenge and was sufficient to induce a central memory-like transcriptional program in NKTs. In mice, NKTs expressing a GD2-specific chimeric-antigen receptor (CAR) with LEF1 demonstrated superior control of neuroblastoma xenograft tumors compared with control CAR-NKTs. These results identify LEF1 as a transcriptional activator of the NKT central memory program and advance development of NKT cell-based immunotherapy. See related Spotlight by Van Kaer, p. 144.


Subject(s)
Natural Killer T-Cells , Receptors, Chimeric Antigen , Humans , Animals , Mice , Natural Killer T-Cells/immunology , beta Catenin , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphocyte Activation/immunology
2.
Brain Commun ; 3(3): fcab149, 2021.
Article in English | MEDLINE | ID: mdl-34396109

ABSTRACT

Sudden Unexpected Death in Epilepsy is a leading cause of epilepsy-related mortality, and the analysis of mouse Sudden Unexpected Death in Epilepsy models is steadily revealing a spectrum of inherited risk phenotypes based on distinct genetic mechanisms. Serotonin (5-HT) signalling enhances post-ictal cardiorespiratory drive and, when elevated in the brain, reduces death following evoked audiogenic brainstem seizures in inbred mouse models. However, no gene in this pathway has yet been linked to a spontaneous epilepsy phenotype, the defining criterion of Sudden Unexpected Death in Epilepsy. Most monogenic models of Sudden Unexpected Death in Epilepsy invoke a failure of inhibitory synaptic drive as a critical pathogenic step. Accordingly, the G protein-coupled, membrane serotonin receptor 5-HT2C inhibits forebrain and brainstem networks by exciting GABAergic interneurons, and deletion of this gene lowers the threshold for lethal evoked audiogenic seizures. Here, we characterize epileptogenesis throughout the lifespan of mice lacking X-linked, 5-HT2C receptors (loxTB Htr2c). We find that loss of Htr2c generates a complex, adult-onset spontaneous epileptic phenotype with a novel progressive hyperexcitability pattern of absences, non-convulsive, and convulsive behavioural seizures culminating in late onset sudden mortality predominantly in male mice. RNAscope localized Htr2c mRNA in subsets of Gad2+ GABAergic neurons in forebrain and brainstem regions. To evaluate the contribution of 5-HT2C receptor-mediated inhibitory drive, we selectively spared their deletion in GAD2+ GABAergic neurons of pan-deleted loxTB Htr2c mice, yet unexpectedly found no amelioration of survival or epileptic phenotype, indicating that expression of 5-HT2C receptors in GAD2+ inhibitory neurons was not sufficient to prevent hyperexcitability and lethal seizures. Analysis of human Sudden Unexpected Death in Epilepsy and epilepsy genetic databases identified an enrichment of HTR2C non-synonymous variants in Sudden Unexpected Death in Epilepsy cases. Interestingly, while early lethality is not reflected in the mouse model, we also identified variants mainly among male Sudden Infant Death Syndrome patients. Our findings validate HTR2C as a novel, sex-linked candidate gene modifying Sudden Unexpected Death in Epilepsy risk, and demonstrate that the complex epilepsy phenotype does not arise solely from 5-HT2C-mediated synaptic disinhibition. These results strengthen the evidence for the serotonin hypothesis of Sudden Unexpected Death in Epilepsy risk in humans, and advance current efforts to develop gene-guided interventions to mitigate premature mortality in epilepsy.

3.
Epilepsia ; 60(10): e104-e109, 2019 10.
Article in English | MEDLINE | ID: mdl-31489630

ABSTRACT

Periventricular nodular heterotopia (PNH) is a common structural malformation of cortical development. Mutations in the filamin A gene are frequent in familial cases with X-linked PNH. However, many cases with sporadic PNH remain genetically unexplained. Although medically refractory epilepsy often brings attention to the underlying PNH, patients are often not candidates for surgical resection. This limits access to neuronal tissue harboring causal mutations. We evaluated a patient with PNH and medically refractory focal epilepsy who underwent a presurgical evaluation with stereotactically placed electroencephalographic (SEEG) depth electrodes. Following SEEG explantation, we collected trace tissue adherent to the electrodes and extracted the DNA. Whole-exome sequencing performed in a Clinical Laboratory Improvement Amendments-approved genetic diagnostic laboratory uncovered a de novo heterozygous pathogenic variant in novel candidate PNH gene MEN1 (multiple endocrine neoplasia type 1; c.1546dupC, p.R516PfsX15). The variant was absent in an earlier exome profiling of the venous blood-derived DNA. The MEN1 gene encodes the ubiquitously expressed, nuclear scaffold protein menin, a known tumor suppressor gene with an established role in the regulation of transcription, proliferation, differentiation, and genomic integrity. Our study contributes a novel candidate gene in PNH generation and a novel practical approach that integrates electrophysiological and genetic explorations of epilepsy.


Subject(s)
Brain/diagnostic imaging , Epilepsies, Partial/surgery , Periventricular Nodular Heterotopia/genetics , Proto-Oncogene Proteins/genetics , Adult , Electrodes, Implanted , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/etiology , Epilepsies, Partial/genetics , Humans , Male , Periventricular Nodular Heterotopia/complications , Periventricular Nodular Heterotopia/diagnostic imaging , Exome Sequencing
4.
Epilepsia ; 55(2): e6-12, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24372310

ABSTRACT

Advanced variant detection in genes underlying risk of sudden unexpected death in epilepsy (SUDEP) can uncover extensive epistatic complexity and improve diagnostic accuracy of epilepsy-related mortality. However, the sensitivity and clinical utility of diagnostic panels based solely on established cardiac arrhythmia genes in the molecular autopsy of SUDEP is unknown. We applied the established clinical diagnostic panels, followed by sequencing and a high density copy number variant (CNV) detection array of an additional 253 related ion channel subunit genes to analyze the overall genomic variation in a SUDEP of the 3-year-old proband with severe myoclonic epilepsy of infancy (SMEI). We uncovered complex combinations of single nucleotide polymorphisms and CNVs in genes expressed in both neurocardiac and respiratory control pathways, including SCN1A, KCNA1, RYR3, and HTR2C. Our findings demonstrate the importance of comprehensive high-resolution variant analysis in the assessment of personally relevant SUDEP risk. In this case, the combination of de novo single nucleotide polymorphisms (SNPs) and CNVs in the SCN1A and KCNA1 genes, respectively, is suspected to be the principal risk factor for both epilepsy and premature death. However, consideration of the overall biologically relevant variant complexity with its extensive functional epistatic interactions reveals potential personal risk more accurately.


Subject(s)
Death, Sudden/pathology , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/genetics , Genomics/methods , Kv1.1 Potassium Channel/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Amino Acid Sequence , Autopsy , Child, Preschool , DNA Copy Number Variations/genetics , Humans , Kv1.1 Potassium Channel/chemistry , Male , Molecular Sequence Data , NAV1.1 Voltage-Gated Sodium Channel/chemistry , Risk Factors
5.
J Mol Diagn ; 15(3): 283-90, 2013 May.
Article in English | MEDLINE | ID: mdl-23518217

ABSTRACT

The Guthrie 903 card archived dried blood spots (DBSs) are a unique but terminal resource amenable for individual and population-wide genomic profiling. The limited amounts of DBS-derived genomic DNA (gDNA) can be whole genome amplified, producing sufficient gDNA for genomic applications, albeit with variable success; optimizing the isolation of high-quality DNA from these finite, low-yield specimens is essential. Agarose gel electrophoresis and spectrophotometry are established postextraction quality control (QC) methods but lack the power to disclose detailed structural, qualitative, or quantitative aspects that underlie gDNA failure in downstream applications. Visual automated fluorescence electrophoresis (VAFE) is a novel QC technology that affords precise quality, quantity, and molecular weight of double-stranded DNA from a single microliter of sample. We extracted DNA from 3-mm DBSs archived in the Swedish Neonatal Repository for >30 years and performed the first quantitative and qualitative analyses of DBS-derived DNA on VAFE, before and after whole genome amplified, in parallel with traditional QC methods. The VAFE QC data were correlated with subsequent sample performance in PCR, sequencing, and high-density comparative genome hybridization array. We observed improved standardization of nucleic acid quantity, quality and integrity, and high performance in the downstream genomic technologies. Addition of VAFE measures in QC increases confidence in the validity of genetic data and allows cost-effective downstream analysis of gDNA for investigational and diagnostic applications.


Subject(s)
DNA/isolation & purification , Dried Blood Spot Testing/methods , Electrophoresis/methods , Genomics/methods , Algorithms , Comparative Genomic Hybridization/methods , DNA Copy Number Variations , Female , Fluorescence , Gene Expression Profiling , Humans , Infant, Newborn , Male , Molecular Weight , Neonatal Screening , Polymerase Chain Reaction , Quality Control , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sequence Analysis, DNA
6.
J Mol Diagn ; 14(5): 451-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22796560

ABSTRACT

Genetic testing and research have increased the demand for high-quality DNA that has traditionally been obtained by venipuncture. However, venous blood collection may prove difficult in special populations and when large-scale specimen collection or exchange is prerequisite for international collaborative investigations. Guthrie/FTA card-based blood spots, buccal scrapes, and finger nail clippings are DNA-containing specimens that are uniquely accessible and thus attractive as alternative tissue sources (ATS). The literature details a variety of protocols for extraction of nucleic acids from a singular ATS type, but their utility has not been systematically analyzed in comparison with conventional sources such as venous blood. Additionally, the efficacy of each protocol is often equated with the overall nucleic acid yield but not with the analytical performance of the DNA during mutation detection. Together with a critical in-depth literature review of published extraction methods, we developed and evaluated an all-inclusive approach for serial, systematic, and direct comparison of DNA utility from multiple biological samples. Our results point to the often underappreciated value of these alternative tissue sources and highlight ways to maximize the ATS-derived DNA for optimal quantity, quality, and utility as a function of extraction method. Our comparative analysis clarifies the value of ATS in genomic analysis projects for population-based screening, diagnostics, molecular autopsy, medico-legal investigations, or multi-organ surveys of suspected mosaicisms.


Subject(s)
DNA/isolation & purification , DNA/standards , Genetic Testing/methods , Molecular Diagnostic Techniques/methods , Humans , Quality Control , Specimen Handling/methods
7.
Ann Bot ; 95(1): 229-35, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15596470

ABSTRACT

BACKGROUND AND AIMS: Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0.16 pg < 1C < 1.95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use this as a template to examine genome size evolution in Brassicaceae. METHODS: DNA contents were determined by flow cytometry and chromosomes were counted for 34 species of the family Brassicaceae and for ten Arabidopsis thaliana ecotypes. The amplified and sequenced ITS region for 23 taxa (plus six other taxa with known ITS sequences) were aligned and used to infer evolutionary relationship by parsimony analysis. KEY RESULTS: DNA content in the species studied ranged over 8-fold (1C = 0.16-1.31 pg), and 4.4-fold (1C = 0.16-0.71 pg) excluding allotetraploid Brassica species. The 1C DNA contents of ten Arabidopsis thaliana ecotypes showed little variation, ranging from 0.16 pg to 0.17 pg. CONCLUSIONS: The tree roots at an ancestral genome size of approximately 1x = 0.2 pg. Arabidopsis thaliana (1C = 0.16 pg; approximately 157 Mbp) has the smallest genome size in Brassicaceae studied here and apparently represents an evolutionary decrease in genome size. Two other branches that represent probable evolutionary decreases in genome size terminate in Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies.


Subject(s)
Brassicaceae/genetics , Evolution, Molecular , Genome, Plant , Arabidopsis/genetics , Chromosomes, Plant , DNA, Plant/analysis , DNA, Plant/genetics , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...