Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
IEEE Trans Vis Comput Graph ; 30(1): 1336-1346, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37878456

ABSTRACT

Situated visualizations are a type of visualization where data is presented next to its physical referent (i.e., the physical object, space, or person it refers to), often using augmented-reality displays. While situated visualizations can be beneficial in various contexts and have received research attention, they are typically designed with the assumption that the physical referent is visible. However, in practice, a physical referent may be obscured by another object, such as a wall, or may be outside the user's visual field. In this paper, we propose a conceptual framework and a design space to help researchers and user interface designers handle non-visible referents in situated visualizations. We first provide an overview of techniques proposed in the past for dealing with non-visible objects in the areas of 3D user interfaces, 3D visualization, and mixed reality. From this overview, we derive a design space that applies to situated visualizations and employ it to examine various trade-offs, challenges, and opportunities for future research in this area.

2.
Article in English | MEDLINE | ID: mdl-38145516

ABSTRACT

Is it true that if citizens understand hurricane probabilities, they will make more rational decisions for evacuation? Finding answers to such questions is not straightforward in the literature because the terms "judgment" and "decision making" are often used interchangeably. This terminology conflation leads to a lack of clarity on whether people make suboptimal decisions because of inaccurate judgments of information conveyed in visualizations or because they use alternative yet currently unknown heuristics. To decouple judgment from decision making, we review relevant concepts from the literature and present two preregistered experiments (N=601) to investigate if the task (judgment vs. decision making), the scenario (sports vs. humanitarian), and the visualization (quantile dotplots, density plots, probability bars) affect accuracy. While experiment 1 was inconclusive, we found evidence for a difference in experiment 2. Contrary to our expectations and previous research, which found decisions less accurate than their direct-equivalent judgments, our results pointed in the opposite direction. Our findings further revealed that decisions were less vulnerable to status-quo bias, suggesting decision makers may disfavor responses associated with inaction. We also found that both scenario and visualization types can influence people's judgments and decisions. Although effect sizes are not large and results should be interpreted carefully, we conclude that judgments cannot be safely used as proxy tasks for decision making, and discuss implications for visualization research and beyond. Materials and preregistrations are available at https://osf.io/ufzp5/?view_only=adc0f78a23804c31bf7fdd9385cb264f.

3.
IEEE Trans Vis Comput Graph ; 28(3): 1661-1679, 2022 03.
Article in English | MEDLINE | ID: mdl-32903184

ABSTRACT

When showing data about people, visualization designers and data journalists often use design strategies that presumably help the audience relate to those people. The term anthropographics has been recently coined to refer to this practice and the resulting visualizations. Anthropographics is a rich and growing area, but the work so far has remained scattered. Despite preliminary empirical work and a few web essays written by practitioners, there is a lack of clear language for thinking about and communicating about anthropographics. We address this gap by introducing a conceptual framework and a design space for anthropographics. Our design space consists of seven elementary design dimensions that can be reasonably hypothesized to have some effect on prosocial feelings or behavior. It extends a previous design space and is informed by an analysis of 105 visualizations collected from newspapers, websites, and research articles. We use our conceptual framework and design space to discuss trade-offs, common design strategies, as well as future opportunities for design and research in the area of anthropographics.


Subject(s)
Computer Graphics , Emotions , Humans
4.
IEEE Trans Vis Comput Graph ; 28(1): 497-507, 2022 01.
Article in English | MEDLINE | ID: mdl-34587032

ABSTRACT

We present an exploratory analysis of gender representation among the authors, committee members, and award winners at the IEEE Visualization (VIS) conference over the last 30 years. Our goal is to provide descriptive data on which diversity discussions and efforts in the community can build. We look in particular at the gender of VIS authors as a proxy for the community at large. We consider measures of overall gender representation among authors, differences in careers, positions in author lists, and collaborations. We found that the proportion of female authors has increased from 9% in the first five years to 22% in the last five years of the conference. Over the years, we found the same representation of women in program committees and slightly more women in organizing committees. Women are less likely to appear in the last author position, but more in the middle positions. In terms of collaboration patterns, female authors tend to collaborate more than expected with other women in the community. All non-gender related data is available on https://osf.io/ydfj4/ and the gender-author matching can be accessed through https://nyu.databrary.org/volume/1301.


Subject(s)
Computer Graphics , Female , Humans
5.
IEEE Trans Vis Comput Graph ; 28(1): 22-32, 2022 01.
Article in English | MEDLINE | ID: mdl-34587071

ABSTRACT

We explore how the lens of fictional superpowers can help characterize how visualizations empower people and provide inspiration for new visualization systems. Researchers and practitioners often tout visualizations' ability to "make the invisible visible" and to "enhance cognitive abilities." Meanwhile superhero comics and other modern fiction often depict characters with similarly fantastic abilities that allow them to see and interpret the world in ways that transcend traditional human perception. We investigate the intersection of these domains, and show how the language of superpowers can be used to characterize existing visualization systems and suggest opportunities for new and empowering ones. We introduce two frameworks: The first characterizes seven underlying mechanisms that form the basis for a variety of visual superpowers portrayed in fiction. The second identifies seven ways in which visualization tools and interfaces can instill a sense of empowerment in the people who use them. Building on these observations, we illustrate a diverse set of "visualization superpowers" and highlight opportunities for the visualization community to create new systems and interactions that empower new experiences with data Material and illustrations are available under CC-BY 4.0 at osf.io/8yhfz.


Subject(s)
Computer Graphics , Immersion , Cognition , Humans , Perception
6.
IEEE Trans Vis Comput Graph ; 26(2): 1413-1432, 2020 02.
Article in English | MEDLINE | ID: mdl-30281459

ABSTRACT

Information visualization designers strive to design data displays that allow for efficient exploration, analysis, and communication of patterns in data, leading to informed decisions. Unfortunately, human judgment and decision making are imperfect and often plagued by cognitive biases. There is limited empirical research documenting how these biases affect visual data analysis activities. Existing taxonomies are organized by cognitive theories that are hard to associate with visualization tasks. Based on a survey of the literature we propose a task-based taxonomy of 154 cognitive biases organized in 7 main categories. We hope the taxonomy will help visualization researchers relate their design to the corresponding possible biases, and lead to new research that detects and addresses biased judgment and decision making in data visualization.


Subject(s)
Bias , Cognition , Decision Making/physiology , Photic Stimulation , Cognition/classification , Cognition/physiology , Computer Graphics , Empirical Research , Humans
7.
Article in English | MEDLINE | ID: mdl-30136987

ABSTRACT

Multiclass maps are scatterplots, multidimensional projections, or thematic geographic maps where data points have a categorical attribute in addition to two quantitative attributes. This categorical attribute is often rendered using shape or color, which does not scale when overplotting occurs. When the number of data points increases, multiclass maps must resort to data aggregation to remain readable. We present multiclass density maps: multiple 2D histograms computed for each of the category values. Multiclass density maps are meant as a building block to improve the expressiveness and scalability of multiclass map visualization. In this article, we first present a short survey of aggregated multiclass maps, mainly from cartography. We then introduce a declarative model-a simple yet expressive JSON grammar associated with visual semantics-that specifies a wide design space of visualizations for multiclass density maps. Our declarative model is expressive and can be efficiently implemented in visualization front-ends such as modern web browsers. Furthermore, it can be reconfigured dynamically to support data exploration tasks without recomputing the raw data. Finally, we demonstrate how our model can be used to reproduce examples from the past and support exploring data at scale.

8.
Article in English | MEDLINE | ID: mdl-30136993

ABSTRACT

This paper introduces dynamic composite physicalizations, a new class of physical visualizations that use collections of self-propelled objects to represent data. Dynamic composite physicalizations can be used both to give physical form to well-known interactive visualization techniques, and to explore new visualizations and interaction paradigms. We first propose a design space characterizing composite physicalizations based on previous work in the fields of Information Visualization and Human Computer Interaction. We illustrate dynamic composite physicalizations in two scenarios demonstrating potential benefits for collaboration and decision making, as well as new opportunities for physical interaction. We then describe our implementation using wheeled micro-robots capable of locating themselves and sensing user input, before discussing limitations and opportunities for future work.

9.
IEEE Trans Vis Comput Graph ; 24(1): 781-790, 2018 01.
Article in English | MEDLINE | ID: mdl-28866535

ABSTRACT

We provide a reappraisal of Tal and Wansink's study "Blinded with Science", where seemingly trivial charts were shown to increase belief in drug efficacy, presumably because charts are associated with science. Through a series of four replications conducted on two crowdsourcing platforms, we investigate an alternative explanation, namely, that the charts allowed participants to better assess the drug's efficacy. Considered together, our experiments suggest that the chart seems to have indeed promoted understanding, although the effect is likely very small. Meanwhile, we were unable to replicate the original study's findings, as text with chart appeared to be no more persuasive - and sometimes less persuasive - than text alone. This suggests that the effect may not be as robust as claimed and may need specific conditions to be reproduced. Regardless, within our experimental settings and considering our study as a whole (), the chart's contribution to understanding was clearly larger than its contribution to persuasion.


Subject(s)
Comprehension , Computer Graphics , Data Visualization , Persuasive Communication , Adult , Crowdsourcing , Female , Humans , Male , Research Design
10.
IEEE Trans Vis Comput Graph ; 24(1): 749-759, 2018 01.
Article in English | MEDLINE | ID: mdl-28866571

ABSTRACT

We explore how to rigorously evaluate multidimensional visualizations for their ability to support decision making. We first define multi-attribute choice tasks, a type of decision task commonly performed with such visualizations. We then identify which of the existing multidimensional visualizations are compatible with such tasks, and set out to evaluate three elementary visualizations: parallel coordinates, scatterplot matrices and tabular visualizations. Our method consists in first giving participants low-level analytic tasks, in order to ensure that they properly understood the visualizations and their interactions. Participants are then given multi-attribute choice tasks consisting of choosing holiday packages. We assess decision support through multiple objective and subjective metrics, including a decision accuracy metric based on the consistency between the choice made and self-reported preferences for attributes. We found the three visualizations to be comparable on most metrics, with a slight advantage for tabular visualizations. In particular, tabular visualizations allow participants to reach decisions faster. Thus, although decision time is typically not central in assessing decision support, it can be used as a tie-breaker when visualizations achieve similar decision accuracy. Our results also suggest that indirect methods for assessing choice confidence may allow to better distinguish between visualizations than direct ones. We finally discuss the limitations of our methods and directions for future work, such as the need for more sensitive metrics of decision support.

11.
IEEE Trans Vis Comput Graph ; 23(1): 461-470, 2017 01.
Article in English | MEDLINE | ID: mdl-27875162

ABSTRACT

We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles are making it increasingly easier to display data in-context. While researchers and artists have already begun to create embedded data representations, the benefits, trade-offs, and even the language necessary to describe and compare these approaches remain unexplored. In this paper, we formalize the notion of physical data referents - the real-world entities and spaces to which data corresponds - and examine the relationship between referents and the visual and physical representations of their data. We differentiate situated representations, which display data in proximity to data referents, and embedded representations, which display data so that it spatially coincides with data referents. Drawing on examples from visualization, ubiquitous computing, and art, we explore the role of spatial indirection, scale, and interaction for embedded representations. We also examine the tradeoffs between non-situated, situated, and embedded data displays, including both visualizations and physicalizations. Based on our observations, we identify a variety of design challenges for embedded data representation, and suggest opportunities for future research and applications.

12.
IEEE Trans Vis Comput Graph ; 23(1): 471-480, 2017 01.
Article in English | MEDLINE | ID: mdl-27875163

ABSTRACT

The attraction effect is a well-studied cognitive bias in decision making research, where one's choice between two alternatives is influenced by the presence of an irrelevant (dominated) third alternative. We examine whether this cognitive bias, so far only tested with three alternatives and simple presentation formats such as numerical tables, text and pictures, also appears in visualizations. Since visualizations can be used to support decision making - e.g., when choosing a house to buy or an employee to hire - a systematic bias could have important implications. In a first crowdsource experiment, we indeed partially replicated the attraction effect with three alternatives presented as a numerical table, and observed similar effects when they were presented as a scatterplot. In a second experiment, we investigated if the effect extends to larger sets of alternatives, where the number of alternatives is too large for numerical tables to be practical. Our findings indicate that the bias persists for larger sets of alternatives presented as scatterplots. We discuss implications for future research on how to further study and possibly alleviate the attraction effect.

13.
IEEE Trans Vis Comput Graph ; 22(1): 559-68, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26529718

ABSTRACT

We introduce time curves as a general approach for visualizing patterns of evolution in temporal data. Examples of such patterns include slow and regular progressions, large sudden changes, and reversals to previous states. These patterns can be of interest in a range of domains, such as collaborative document editing, dynamic network analysis, and video analysis. Time curves employ the metaphor of folding a timeline visualization into itself so as to bring similar time points close to each other. This metaphor can be applied to any dataset where a similarity metric between temporal snapshots can be defined, thus it is largely datatype-agnostic. We illustrate how time curves can visually reveal informative patterns in a range of different datasets.

14.
IEEE Trans Vis Comput Graph ; 20(12): 2082-91, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26356922

ABSTRACT

We present Bertifier, a web app for rapidly creating tabular visualizations from spreadsheets. Bertifier draws from Jacques Bertin's matrix analysis method, whose goal was to "simplify without destroying" by encoding cell values visually and grouping similar rows and columns. Although there were several attempts to bring this method to computers, no implementation exists today that is both exhaustive and accessible to a large audience. Bertifier remains faithful to Bertin's method while leveraging the power of today's interactive computers. Tables are formatted and manipulated through crossets, a new interaction technique for rapidly applying operations on rows and columns. We also introduce visual reordering, a semi-interactive reordering approach that lets users apply and tune automatic reordering algorithms in a WYSIWYG manner. Sessions with eight users from different backgrounds suggest that Bertifier has the potential to bring Bertin's method to a wider audience of both technical and non-technical users, and empower them with data analysis and communication tools that were so far only accessible to a handful of specialists.


Subject(s)
Computer Graphics , Internet , Software , Data Display , Humans
15.
IEEE Trans Vis Comput Graph ; 20(12): 2241-50, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26356938

ABSTRACT

Interactive visual applications often rely on animation to transition from one display state to another. There are multiple animation techniques to choose from, and it is not always clear which should produce the best visual correspondences between display elements. One major factor is whether the animation relies on staggering-an incremental delay in start times across the moving elements. It has been suggested that staggering may reduce occlusion, while also reducing display complexity and producing less overwhelming animations, though no empirical evidence has demonstrated these advantages. Work in perceptual psychology does show that reducing occlusion, and reducing inter-object proximity (crowding) more generally, improves performance in multiple object tracking. We ran simulations confirming that staggering can in some cases reduce crowding in animated transitions involving dot clouds (as found in, e.g., animated 2D scatterplots). We empirically evaluated the effect of two staggering techniques on tracking tasks, focusing on cases that should most favour staggering. We found that introducing staggering has a negligible, or even negative, impact on multiple object tracking performance. The potential benefits of staggering may be outweighed by strong costs: a loss of common-motion grouping information about which objects travel in similar paths, and less predictability about when any specific object would begin to move. Staggering may be beneficial in some conditions, but they have yet to be demonstrated. The present results are a significant step toward a better understanding of animation pacing, and provide direction for further research.

16.
IEEE Trans Vis Comput Graph ; 19(12): 2346-55, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24051801

ABSTRACT

We present a first investigation into hybrid-image visualization for data analysis in large-scale viewing environments. Hybrid-image visualizations blend two different visual representations into a single static view, such that each representation can be perceived at a different viewing distance. Our work is motivated by data analysis scenarios that incorporate one or more displays with sufficiently large size and resolution to be comfortably viewed by different people from various distances. Hybrid-image visualizations can be used, in particular, to enhance overview tasks from a distance and detail-in-context tasks when standing close to the display. By using a perception-based blending approach, hybrid-image visualizations make two full-screen visualizations accessible without tracking viewers in front of a display. We contribute a design space, discuss the perceptual rationale for our work, provide examples, and introduce a set of techniques and tools to aid the design of hybrid-image visualizations.


Subject(s)
Algorithms , Computer Graphics , Ecosystem , Image Enhancement/methods , Information Storage and Retrieval/methods , User-Computer Interface , Visual Perception/physiology , Humans , Reproducibility of Results , Sensitivity and Specificity
17.
IEEE Trans Vis Comput Graph ; 19(12): 2396-405, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24051806

ABSTRACT

We present an interaction model for beyond-desktop visualizations that combines the visualization reference model with the instrumental interaction paradigm. Beyond-desktop visualizations involve a wide range of emerging technologies such as wall-sized displays, 3D and shape-changing displays, touch and tangible input, and physical information visualizations. While these technologies allow for new forms of interaction, they are often studied in isolation. New conceptual models are needed to build a coherent picture of what has been done and what is possible. We describe a modified pipeline model where raw data is processed into a visualization and then rendered into the physical world. Users can explore or change data by directly manipulating visualizations or through the use of instruments. Interactions can also take place in the physical world outside the visualization system, such as when using locomotion to inspect a large scale visualization. Through case studies we illustrate how this model can be used to describe both conventional and unconventional interactive visualization systems, and compare different design alternatives.


Subject(s)
Algorithms , Computer Graphics , Image Enhancement/methods , User-Computer Interface , Computer Simulation , Models, Theoretical
18.
IEEE Trans Vis Comput Graph ; 17(12): 2469-78, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22034368

ABSTRACT

We present the results of a user study that compares different ways of representing Dual-Scale data charts. Dual-Scale charts incorporate two different data resolutions into one chart in order to emphasize data in regions of interest or to enable the comparison of data from distant regions. While some design guidelines exist for these types of charts, there is currently little empirical evidence on which to base their design. We fill this gap by discussing the design space of Dual-Scale cartesian-coordinate charts and by experimentally comparing the performance of different chart types with respect to elementary graphical perception tasks such as comparing lengths and distances. Our study suggests that cut-out charts which include collocated full context and focus are the best alternative, and that superimposed charts in which focus and context overlap on top of each other should be avoided.

19.
IEEE Trans Vis Comput Graph ; 17(6): 795-807, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20548113

ABSTRACT

Visualization applications routinely map quantitative attributes to color using color scales. Although color is an effective visualization channel, it is limited by both display hardware and the human visual system. We propose a new interaction technique that overcomes these limitations by dynamically optimizing color scales based on a set of sampling lenses. The technique inspects the lens contents in data space, optimizes the initial color scale, and then renders the contents of the lens to the screen using the modified color scale. We present two prototype implementations of this pipeline and describe several case studies involving both information visualization and image inspection applications. We validate our approach with two mutually linked and complementary user studies comparing the Color Lens with explicit contrast control for visual search.


Subject(s)
Image Processing, Computer-Assisted/methods , Software , Color , Computer Graphics , Hand/diagnostic imaging , Humans , Models, Theoretical , Radiography
20.
IEEE Trans Vis Comput Graph ; 16(6): 1073-81, 2010.
Article in English | MEDLINE | ID: mdl-20975145

ABSTRACT

GeneaQuilts is a new visualization technique for representing large genealogies of up to several thousand individuals. The visualization takes the form of a diagonally-filled matrix, where rows are individuals and columns are nuclear families. After identifying the major tasks performed in genealogical research and the limits of current software, we present an interactive genealogy exploration system based on GeneaQuilts. The system includes an overview, a timeline, search and filtering components, and a new interaction technique called Bring & Slide that allows fluid navigation in very large genealogies. We report on preliminary feedback from domain experts and show how our system supports a number of their tasks.

SELECTION OF CITATIONS
SEARCH DETAIL
...