Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(16): 17903-17918, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680315

ABSTRACT

Investigating the interaction between liposomes and proteins is of paramount importance in the development of liposomal formulations with real potential for bench-to-bedside transfer. Upon entering the body, proteins are immediately adsorbed on the liposomal surface, changing the nanovehicles' biological identity, which has a significant impact on their biodistribution and pharmacokinetics and ultimately on their therapeutic effect. Albumin is the most abundant plasma protein and thus usually adsorbs immediately on the liposomal surface. We herein report a comprehensive investigation on the adsorption of model protein bovine serum albumin (BSA) onto liposomal vesicles containing the zwitterionic lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), in combination with either cholesterol (CHOL) or the cationic lipid 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP). While many studies regarding protein adsorption on the surface of liposomes with different compositions have been performed, to the best of our knowledge, the differential responses of CHOL and DOTAP upon albumin adsorption on vesicles have not yet been investigated. UV-vis spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a strong influence of the phospholipid membrane composition on protein adsorption. Hence, it was found that DOTAP-containing vesicles adsorb proteins more robustly but also aggregate in the presence of BSA, as confirmed by DLS and TEM. Separation of liposome-protein complexes from unadsorbed proteins performed by means of centrifugation and size exclusion chromatography (SEC) was also investigated. Our results show that neither method can be regarded as a golden experimental setup to study the protein corona of liposomes. Yet, SEC proved to be more successful in the separation of unbound proteins, although the amount of lipid loss upon liposome elution was higher than expected. In addition, coarse-grained molecular dynamics simulations were employed to ascertain key membrane parameters, such as the membrane thickness and area per lipid. Overall, this study highlights the importance of surface charge and membrane fluidity in influencing the extent of protein adsorption. We hope that our investigation will be a valuable contribution to better understanding protein-vesicle interactions for improved nanocarrier design.

2.
ACS Omega ; 8(29): 26102-26121, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37521604

ABSTRACT

Layered double hydroxides (LDHs) or hydrotalcite-like compounds have attracted great attention for the delivery of anticancer drugs due to their 2D structure, exhibiting a high surface-to-volume ratio and a high chemical versatility. The drug is protected between the layers from which it is slowly released, thus increasing the therapeutic effect and minimizing the side effects associated to nonspecific targeting. This work aimed to design LDHs with Mg and Al (molar ratio of 2/1) in brucite-like layers, which retained fluorouracil (5-FU; 5-FU/Al = 1, molar ratio) in the interlayer gallery as the layers grow during the co-precipitation step of the synthesis. To rationally control the physicochemical properties, particularly the size of the crystallites, the aging step following the co-precipitation was performed under carefully controlled conditions by changing the time and temperature (i.e., 25 °C for 16 h, 100 °C for 16 h, and 120 °C for 24 h). The results revealed the achievement of the control of the size of the crystals, which are gathered in three different agglomeration systems, from tight to loose, as well as the loading degree of the drug in the final organic-inorganic hybrid nanomaterials. The role played by the factors and parameters affecting the drug-controlled release was highlighted by assessing the release behavior of 5-FU by changing the pH, solid mass/volume ratio, and ionic strength. The results showed a pH-dependent behavior but not necessarily in a direct proportionality. After a certain limit, the mass of the solid diminishes the rate of release, whereas the ionic strength is essential for the payload discharge.

3.
Pharmaceutics ; 14(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36297615

ABSTRACT

Erythromycin (ERY) is a macrolide compound with a broad antimicrobial spectrum which is currently being used to treat a large number of bacterial infections affecting the skin, respiratory tract, intestines, bones and other systems, proving great value from a clinical point of view. It became popular immediately after its discovery in 1952, due to its therapeutic effect against pathogens resistant to other drugs. Despite this major advantage, ERY exhibits several drawbacks, raising serious clinical challenges. Among them, the very low solubility in water and instability under acidic conditions cause a limited efficacy and bioavailability. Apart from this, higher doses promote drug resistance and undesirable effects. In order to overcome these disadvantages, during the past decades, a large variety of ERY formulations, including nanoparticles, have emerged. Despite the interest in ERY-(nano)formulations, a review on them is lacking. Therefore, this work was aimed at reviewing all efforts made to encapsulate ERY in formulations of various chemical compositions, sizes and morphologies. In addition, their preparation/synthesis, physico-chemical properties and performances were carefully analysed. Limitations of these studies, particularly the quantification of ERY, are discussed as well.

4.
Pharmaceutics ; 14(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35214041

ABSTRACT

Glioblastoma (GBM) is a lethal brain cancer with a very difficult therapeutic approach and ultimately frustrating results. Currently, therapeutic success is mainly limited by the high degree of genetic and phenotypic heterogeneity, the blood brain barrier (BBB), as well as increased drug resistance. Temozolomide (TMZ), a monofunctional alkylating agent, is the first line chemotherapeutic drug for GBM treatment. Yet, the therapeutic efficacy of TMZ suffers from its inability to cross the BBB and very short half-life (~2 h), which requires high doses of this drug for a proper therapeutic effect. Encapsulation in a (nano)carrier is a promising strategy to effectively improve the therapeutic effect of TMZ against GBM. Although research on liposomes as carriers for therapeutic agents is still at an early stage, their integration in GBM treatment has a great potential to advance understanding and treating this disease. In this review, we provide a critical discussion on the preparation methods and physico-chemical properties of liposomes, with a particular emphasis on TMZ-liposomal formulations targeting GBM developed within the last decade. Furthermore, an overview on liposome-based formulations applied to translational oncology and clinical trials formulations in GBM treatment is provided. We emphasize that despite many years of intense research, more careful investigations are still needed to solve the main issues related to the manufacture of reproducible liposomal TMZ formulations for guaranteed translation to the market.

5.
ChemSusChem ; 8(11): 1885-91, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25891431

ABSTRACT

The hydrogenation of furfural to furfuryl alcohol was performed in the presence of a Co/SBA-15 catalyst. High selectivity (96 %) at a conversion higher than 95 % is reported over this catalytic system. As the conversion of furfural to furfuryl alcohol occurs over metallic Co sites, the effect of reduction temperature, H2 pressure, and reaction temperature were studied. Optimum reaction conditions were: 150 °C, 1.5 h, 2.0 MPa of H2 . The catalyst was recyclable, and furfuryl alcohol was recovered with a purity higher than 90 %. The effect of the solvent concentration was also studied. With a minimum of 50 wt % of solvent, the selectivity to furfuryl alcohol and the conversion of furfural remained high (both over 80 %). Likewise, the activity of the catalyst is maintained even in pure furfural, which confirms the real potential of the proposed catalytic system. This catalyst was also used in the hydrogenation of levulinic acid to produce γ-valerolactone selectively.


Subject(s)
Cobalt/chemistry , Furaldehyde/chemistry , Furans/chemistry , Silicon Dioxide/chemistry , Catalysis , Hydrogen/chemistry , Hydrogenation , Kinetics , Levulinic Acids/chemistry , Models, Molecular , Molecular Conformation , Nanoparticles/chemistry , Oxidation-Reduction , Porosity , Pressure , Temperature
6.
Chem Commun (Camb) ; 49(69): 7665-7, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23877031

ABSTRACT

Stabilization of transition metals in nano-phyllosilicate phases generated by digestion of mesoporous silica is reported as an efficient route for the formation of highly dispersed metallic nanoparticles with outstanding catalytic activity.

7.
ACS Appl Mater Interfaces ; 5(8): 3010-25, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23496429

ABSTRACT

NiO and NiO-CuO polycrystalline rodlike nanoparticles were confined and stabilized within the channels of ordered mesoporous SBA-15 silica by a simple and viable approach consisting in incipient wetness impregnation of the calcined support with aqueous solutions of metal nitrates followed by a mild drying step at 25 °C and calcination. As revealed by low- and high-angle XRD, N2 adsorption/desorption, HRTEM/EDXS and H2 TPR analyses, the morphostructural properties of NiO-CuO nanoparticles can be controlled by adjusting their chemical composition, creating the prerequisites to obtain high performance bimetallic catalysts. Experimental evidence by in situ XRD monitoring during the thermoprogrammed reduction indicates that the confined NiO-CuO nanoparticles evolve into thermostable and well-dispersed Ni-Cu heterostructures. The strong Cu-Ni and Ni-support interactions demonstrated by TPR and XPS were put forward to explain the formation of these new bimetallic structures. The optimal Ni-Cu/SBA-15 catalyst (i.e., Cu/(Cu+Ni) atomic ratio of 0.2) proved a greatly enhanced reducibility and H2 chemisorption capacity, and an improved activity in the hydrogenation of cinnamaldehyde, as compared with the monometallic Ni/SBA-15 or Cu/SBA-15 counterparts, which can be associated with the synergism between nickel and copper and high dispersion of active components on the SBA-15 host. The unique structure and controllable properties of both oxidic and metallic forms of Ni-Cu/SBA-15 materials make them very attractive for both fundamental research and practical catalytic applications.

8.
Acta Chim Slov ; 57(3): 677-85, 2010 Sep.
Article in English | MEDLINE | ID: mdl-24061816

ABSTRACT

Several Zn/Ni/Cu/Al layered double hydroxides (LDH) with variable Ni/Cu ratios but constant Zn/Al, as well as M2+/M3+ ratios, were synthesized by coprecipitation method with CO32- as compensating anion. The main goal of the study was to investigate the influence of the catalysts composition, especially Ni/Cu ratio, on the physical and catalytic properties of these materials. The XRD results show that all the LDHs samples are well crystallized and contain only pure phases. Moreover, the spectral techniques (FT-IR and DR-UV-VIS) indicated that both Ni and Cu species are present in the brucite-like layers of LDHs. The shape of the nitrogen physisorption isotherms obtained at -196 °C indicates a predominantly mesoporous materials; the surface areas and pore volumes are in the specific ranges between 37-86 m2.g-1 and 0.31-0.75 cm3.g-1, respectively. Three characteristic weight losses between 30 and 400 °C are identified by TG analysis for the hydrotalcite-like materials synthesized in this study. Moreover, an influence of the Ni/Cu ratios on the amount of the physisorbed water was noticed. The preliminary catalytic test revealed unusual catalytic properties of the non-calcined samples in the liquid phase hydrogenation of trans-cinnamaldehyde.

SELECTION OF CITATIONS
SEARCH DETAIL
...