Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
RSC Adv ; 10(19): 11079-11087, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-35495330

ABSTRACT

Cyanovirin-N (CV-N) has been shown to reveal broad neutralizing activity against human immunodeficiency virus (HIV) and to specifically bind Manα(1→2)Manα units exposed on various glycoproteins of enveloped viruses, such as influenza hemagglutinin (HA) and Ebola glycoprotein. Chemically synthesized dimannosylated HA peptides bound domain-swapped and dimeric CV-N with either four disulfide-bonds (Cys-Cys), or three Cys-Cys bonds and an intact fold of the high-affinity binding site at an equilibrium dissociation constant K D of 10 µM. Cys-Cys mutagenesis with ion-pairing amino-acids glutamic acid and arginine was calculated by in silico structure-based protein design and allowed for recognizing dimannose and dimannosylated peptide binding to low-affinity binding sites (K D ≈ 11 µM for one C58-C73 bond, and binding to dimannosylated peptide). In comparison, binding to HA was achieved based on one ion-pairing C58E-C73R substitution at K D = 275 nM, and K D = 5 µM for two C58E-C73R substitutions. We were utilizing a triazole bioisostere linkage to form the respective mannosylated-derivative on the HA peptide sequence of residues glutamine, glycine, and glutamic acid. Thus, mono- and dimannosylated peptides with N-terminal cysteine facilitated site-specific interactions with HA peptides, mimicking a naturally found N-linked glycosylation site on the HA head domain.

2.
BMC Genomics ; 18(1): 597, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28797224

ABSTRACT

BACKGROUND: The effects of long-term environmental adaptation and the implications of major cellular malfunctions are still poorly understood for non-model but biotechnologically relevant species. In this study we performed a large-scale laboratory evolution experiment with 48 populations of the yeast Pichia pastoris in order to establish a general adaptive landscape upon long-term selection in several glucose-based growth environments. As a model for a cellular malfunction the implications of OCH1 mannosyltransferase knockout-mediated glycosylation-deficiency were analyzed. RESULTS: In-depth growth profiling of evolved populations revealed several instances of genotype-dependent growth trade-off/cross-benefit correlations in non-evolutionary growth conditions. On the genome level a high degree of mutational convergence was observed among independent populations. Environment-dependent mutational hotspots were related to osmotic stress-, Rim - and cAMP signaling pathways. In agreement with the observed growth phenotypes, our data also suggest diverging compensatory mutations in glycosylation-deficient populations. High osmolarity glycerol (HOG) pathway loss-of-functions mutations, including genes such as SSK2 and SSK4, represented a major adaptive strategy during environmental adaptation. However, genotype-specific HOG-related mutations were predominantly observed in opposing environmental conditions. Surprisingly, such mutations emerged during salt stress adaptation in OCH1 knockout populations and led to growth trade-offs in non-adaptive conditions that were distinct from wildtype HOG-mutants. Further environment-dependent mutations were identified for a hitherto uncharacterized species-specific Gal4-like transcriptional regulator involved in environmental sensing. CONCLUSION: We show that metabolic constraints such as glycosylation-deficiency can contribute to evolution on the molecular level, even in non-diverging growth environments. Our dataset suggests universal adaptive mechanisms involving cellular stress response and cAMP/PKA signaling but also the existence of highly species-specific strategies involving unique transcriptional regulators, improving our biological understanding of distinct Ascomycetes species.


Subject(s)
Adaptation, Physiological , Pichia/genetics , Pichia/physiology , Environment , Evolution, Molecular , Gene Knockout Techniques , Genotype , Glycosylation , Mannosyltransferases/deficiency , Mannosyltransferases/genetics , Mutation , Phenotype , Pichia/drug effects , Pichia/metabolism , Salts/pharmacology , Stress, Physiological/drug effects
3.
Microb Cell Fact ; 16(1): 49, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28302114

ABSTRACT

BACKGROUND: Pichia pastoris is a widely used eukaryotic expression host for recombinant protein production. Adaptive laboratory evolution (ALE) has been applied in a wide range of studies in order to improve strains for biotechnological purposes. In this context, the impact of long-term carbon source adaptation in P. pastoris has not been addressed so far. Thus, we performed a pilot experiment in order to analyze the applicability and potential benefits of ALE towards improved growth and recombinant protein production in P. pastoris. RESULTS: Adaptation towards growth on methanol was performed in replicate cultures in rich and minimal growth medium for 250 generations. Increased growth rates on these growth media were observed at the population and single clone level. Evolved populations showed various degrees of growth advantages and trade-offs in non-evolutionary growth conditions. Genome resequencing revealed a wide variety of potential genetic targets associated with improved growth performance on methanol-based growth media. Alcohol oxidase represented a mutational hotspot since four out of seven evolved P. pastoris clones harbored mutations in this gene, resulting in decreased Aox activity, despite increased growth rates. Selected clones displayed strain-dependent variations for AOX-promoter based recombinant protein expression yield. One particularly interesting clone showed increased product titers ranging from a 2.5-fold increase in shake flask batch culture to a 1.8-fold increase during fed batch cultivation. CONCLUSIONS: Our data indicate a complex correlation of carbon source, growth context and recombinant protein production. While similar experiments have already shown their potential in other biotechnological areas where microbes were evolutionary engineered for improved stress resistance and growth, the current dataset encourages the analysis of the potential of ALE for improved protein production in P. pastoris on a broader scale.


Subject(s)
Culture Media/chemistry , Directed Molecular Evolution , Methanol/metabolism , Pichia/growth & development , Pichia/genetics , Recombinant Proteins/biosynthesis , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Batch Cell Culture Techniques/methods , Biotechnology/methods , Cloning, Molecular , Mutation , Pichia/metabolism , Pilot Projects , Promoter Regions, Genetic
4.
Biochim Biophys Acta Gen Subj ; 1861(4): 699-714, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28077298

ABSTRACT

BACKGROUND: Insects are significant to the environment, agriculture, health and biotechnology. Many of these aspects display some relationship to glycosylation, e.g., in case of pathogen binding or production of humanised antibodies; for a long time, it has been considered that insect N-glycosylation potentials are rather similar and simple, but as more species are glycomically analysed in depth, it is becoming obvious that there is indeed a large structural diversity and interspecies variability. METHODS: Using an off-line LC-MALDI-TOF MS approach, we have analysed the N-glycomes of two lepidopteran species (the cabbage looper Trichoplusia ni and the gypsy moth Lymantria dispar) as well as of the commonly-used T. ni High Five cell line. RESULTS: We detected not only sulphated, glucuronylated, core difucosylated and Lewis-like antennal fucosylated structures, but also the zwitterion phosphorylcholine on antennal GlcNAc residues, a modification otherwise familiar from nematodes; in L. dispar, N-glycans with glycolipid-like antennae containing α-linked N-acetylgalactosamine were also revealed. CONCLUSION: The lepidopteran glycomes analysed not only display core α1,3-fucosylation, which is foreign to mammals, but also up to 5% anionic and/or zwitterionic glycans previously not found in these species. SIGNIFICANCE: The occurrence of anionic and zwitterionic glycans in the Lepidoptera data is not only of glycoanalytical and evolutionary interest, but is of biotechnological relevance as lepidopteran cell lines are potential factories for recombinant glycoprotein production.


Subject(s)
Lepidoptera/metabolism , Lepidoptera/physiology , Polysaccharides/metabolism , Animals , Cell Line , Glycolipids , Glycoproteins/metabolism , Glycosylation , Moths/metabolism , Moths/physiology , Phosphorylcholine/metabolism , Sulfates/metabolism
5.
Mol Cell Proteomics ; 14(8): 2111-25, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26002521

ABSTRACT

The N-glycosylation of the model nematode Caenorhabditis elegans has proven to be highly variable and rather complex; it is an example to contradict the existing impression that "simple" organisms possess also a rather simple glycomic capacity. In previous studies in a number of laboratories, N-glycans with up to four fucose residues have been detected. However, although the linkage of three fucose residues to the N,N'-diacetylchitobiosyl core has been proven by structural and enzymatic analyses, the nature of the fourth fucose has remained uncertain. By constructing a triple mutant with deletions in the three genes responsible for core fucosylation (fut-1, fut-6 and fut-8), we have produced a nematode strain lacking products of these enzymes, but still retaining maximally one fucose residue on its N-glycans. Using mass spectrometry and HPLC in conjunction with chemical and enzymatic treatments as well as NMR, we examined a set of α-mannosidase-resistant N-glycans. Within this glycomic subpool, we can reveal that the core ß-mannose can be trisubstituted and so carries not only the ubiquitous α1,3- and α1,6-mannose residues, but also a "bisecting" ß-galactose, which is substoichiometrically modified with fucose or methylfucose. In addition, the α1,3-mannose can also be α-galactosylated. Our data, showing the presence of novel N-glycan modifications, will enable more targeted studies to understand the biological functions and interactions of nematode glycans.


Subject(s)
Caenorhabditis elegans/metabolism , Galactose/metabolism , Mutation/genetics , Polysaccharides/metabolism , Animals , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Fucose/metabolism , Fucosyltransferases/metabolism , Gene Knockout Techniques , Glycoproteins/metabolism , Isomerism , Mannosidases/metabolism , Methylation , Polysaccharides/chemistry , Protein Isoforms/metabolism , Proteome/metabolism , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
6.
Glycobiology ; 25(4): 448-64, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25488985

ABSTRACT

Fused lobes (FDL) hexosaminidases are the most recently genetically defined glycosidases involved in the biosynthesis of N-glycans in invertebrates, and their narrow specificity is essential for the generation of paucimannosidic N-glycans in insects. In this study, we explored the potential of FDL hexosaminidases in the utilization of different artificial and natural substrates, both as purified, native compounds or generated in vitro using various relevant glycosyltransferases. In addition to the already-known FDL enzyme from Drosophila melanogaster, we now have identified and characterized the Apis mellifera FDL homolog. The enzymatic properties of the soluble forms of the affinity-purified insect FDL enzymes, expressed in both yeast and insect cells, were compared with those of the phylogenetically distinct recombinant Caenorhabditis elegans FDL-like enzymes and the N-acetylgalactosamine (GalNAc)-specific Caenorhabditis hexosaminidase HEX-4. In tests with a range of substrates, including natural N-glycans, we show that the invertebrate FDL(-like) enzymes are highly specific for N-acetylglucosamine attached to the α1,3-mannose, but under extreme conditions also remove other terminal GalNAc and N-acetylglucosamine residues. Recombinant FDL also proved useful in the analysis of complex mixtures of N-glycans originating from wild-type and mutant Caenorhabditis strains, thereby aiding isomeric definition of paucimannosidic and hybrid N-glycans in this organism. Furthermore, differences in activity and specificity were shown for two site-directed mutants of Drosophila FDL, compatible with the high structural similarity of chitinolytic and N-glycan degrading exohexosaminidases in insects. Our studies are another indication for the variety of structural and function aspects in the GH20 hexosaminidase family important for both catabolism and biosynthesis of glycoconjugates in eukaryotes.


Subject(s)
Hexosaminidases/chemistry , Amino Acid Sequence , Animals , Bees/enzymology , Biocatalysis , Caenorhabditis elegans/enzymology , Caenorhabditis elegans Proteins/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Cell Line , Drosophila Proteins/chemistry , Drosophila melanogaster/enzymology , Glycopeptides/chemistry , Glycosylation , Hydrogen-Ion Concentration , Molecular Sequence Data , Phylogeny , Polysaccharides/chemistry , Substrate Specificity
7.
Electrophoresis ; 35(15): 2116-29, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24574058

ABSTRACT

In this study, we have performed the first mass spectrometric analysis of N-glycans of the M31 mutant strain of the cellular slime mould Dictyostelium discoideum, previously shown to have a defect in glucosidase II. Together with glucosidase I, this enzyme mediates part of the initial processing of N-glycans; defects in either glucosidase are associated with human diseases and result in an accumulation of incorrectly processed oligosaccharides which are not, or only poor, substrates for a range of downstream enzymes. To examine the effect of the glucosidase II mutation in Dictyostelium, we employed off-line LC-MALDI-TOF MS in combination with chemical and enzymatic treatments and MS/MS to analyze the neutral and anionic N-glycans of the mutant as compared to the wild type. The major neutral species were, as expected, of the composition Hex10-11 HexNAc2-3 with one or two terminal glucose residues. Consistent with the block in processing of neutral N-glycans caused by the absence of glucosidase II, fucose was apparently absent from the N-glycans and bisecting N-acetylglucosamine was rare. The major anionic oligosaccharides were sulfated and/or methylphosphorylated forms of Hex8-11 HexNAc2-3 , many of which surprisingly lacked glucose residues entirely. As anionic N-glycans are considered to be mostly associated with lysosomal enzymes in Dictyostelium, we hypothesise that glycosidases present in the acidic compartments may act on the oligosaccharides attached to such slime mould proteins. Furthermore, our chosen analytical approach enabled us, via observation of diagnostic negative-mode MS/MS fragments, to determine the fine structure of the methylphosphorylated and sulfated N-glycans of the M31 glucosidase mutant in their native state.


Subject(s)
Dictyostelium/genetics , Glycomics/methods , Polysaccharides/analysis , Polysaccharides/chemistry , Protozoan Proteins/genetics , alpha-Glucosidases/genetics , Amino Acid Sequence , Chromatography, Liquid , Dictyostelium/chemistry , Dictyostelium/metabolism , Mass Spectrometry , Molecular Sequence Data , Mutation , Polysaccharides/metabolism , Sequence Alignment
8.
Appl Microbiol Biotechnol ; 98(8): 3553-67, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24037406

ABSTRACT

Galactosidases are widespread enzymes that are used for manifold applications, including production of prebiotics, biosynthesis of different transgalactosylated products, improving lactose tolerance and in various analytical approaches. The nature of these applications often require galactosidases to be present in a purified form with clearly defined properties, including precisely determined substrate specificities, low sensitivity to inhibitors, and high efficiency and stability under distinct conditions. In this study, we present the recombinant expression and purification of two previously uncharacterized ß-galactosidases from Aspergillus nidulans as well as one ß-galactosidase from Aspergillus niger. All enzymes were active toward p-nitrophenyl-ß-D-galactopyranoside as substrate and displayed similar temperature and pH optima. The purified recombinant galactosidases digested various complex substrates containing terminal galactose ß-1,4 linked to either N-acetylglucosamine or fucose, such as N-glycans derived from bovine fibrin and Caenorhabditis elegans. In our comparative study of the recombinant galactosidases with the commercially available galactosidase from Aspergillus oryzae, all enzymes also displayed various degrees of activity toward complex oligosaccharides containing ß-1,3-linked terminal galactose residues. All recombinant enzymes were found to be robust in the presence of various organic solvents, temperature variations, and freeze/thaw cycles and were also tested for their ability to synthesize galactooligosaccharides. Furthermore, the use of fermentors considerably increased the yield of recombinant galactosidases. Taken together, we demonstrate that purified recombinant galactosidases from A. niger and from A. nidulans are suitable for various glycobiological and biotechnological applications.


Subject(s)
Aspergillus nidulans/enzymology , Aspergillus niger/enzymology , Biotechnology/methods , Glycomics/methods , beta-Galactosidase/metabolism , Aspergillus nidulans/genetics , Aspergillus niger/genetics , Hydrogen-Ion Concentration , Kinetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity , Temperature , beta-Galactosidase/genetics , beta-Galactosidase/isolation & purification
9.
Microb Cell Fact ; 12: 64, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23815749

ABSTRACT

Adaptive laboratory evolution is a frequent method in biological studies to gain insights into the basic mechanisms of molecular evolution and adaptive changes that accumulate in microbial populations during long term selection under specified growth conditions. Although regularly performed for more than 25 years, the advent of transcript and cheap next-generation sequencing technologies has resulted in many recent studies, which successfully applied this technique in order to engineer microbial cells for biotechnological applications. Adaptive laboratory evolution has some major benefits as compared with classical genetic engineering but also some inherent limitations. However, recent studies show how some of the limitations may be overcome in order to successfully incorporate adaptive laboratory evolution in microbial cell factory design. Over the last two decades important insights into nutrient and stress metabolism of relevant model species were acquired, whereas some other aspects such as niche-specific differences of non-conventional cell factories are not completely understood. Altogether the current status and its future perspectives highlight the importance and potential of adaptive laboratory evolution as approach in biotechnological engineering.


Subject(s)
Evolution, Molecular , Biotechnology , Gene Regulatory Networks
10.
Mol Syst Biol ; 9: 643, 2013.
Article in English | MEDLINE | ID: mdl-23385483

ABSTRACT

Bacterial populations have a remarkable capacity to cope with extreme environmental fluctuations in their natural environments. In certain cases, adaptation to one stressful environment provides a fitness advantage when cells are exposed to a second stressor, a phenomenon that has been coined as cross-stress protection. A tantalizing question in bacterial physiology is how the cross-stress behavior emerges during evolutionary adaptation and what the genetic basis of acquired stress resistance is. To address these questions, we evolved Escherichia coli cells over 500 generations in five environments that include four abiotic stressors. Through growth profiling and competition assays, we identified several cases of positive and negative cross-stress behavior that span all strain-stress combinations. Resequencing the genomes of the evolved strains resulted in the identification of several mutations and gene amplifications, whose fitness effect was further assessed by mutation reversal and competition assays. Transcriptional profiling of all strains under a specific stress, NaCl-induced osmotic stress, and integration with resequencing data further elucidated the regulatory responses and genes that are involved in this phenomenon. Our results suggest that cross-stress dependencies are ubiquitous, highly interconnected, and can emerge within short timeframes. The high adaptive potential that we observed argues that bacterial populations occupy a genotypic space that enables a high phenotypic plasticity during adaptation in fluctuating environments.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Escherichia coli/physiology , Mutation , Environment , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Osmotic Pressure
11.
J Biol Eng ; 6(1): 2, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22463687

ABSTRACT

BACKGROUND: Recombinant protein production is a process of great industrial interest, with products that range from pharmaceuticals to biofuels. Since high level production of recombinant protein imposes significant stress in the host organism, several methods have been developed over the years to optimize protein production. So far, these trial-and-error techniques have proved laborious and sensitive to process parameters, while there has been no attempt to address the problem by applying Synthetic Biology principles and methods, such as integration of standardized parts in novel synthetic circuits. RESULTS: We present a novel self-regulatory protein production system that couples the control of recombinant protein production with a stress-induced, negative feedback mechanism. The synthetic circuit allows the down-regulation of recombinant protein expression through a stress-induced promoter. We used E. coli as the host organism, since it is widely used in recombinant processes. Our results show that the introduction of the self-regulatory circuit increases the soluble/insoluble ratio of recombinant protein at the expense of total protein yield. To further elucidate the dynamics of the system, we developed a computational model that is in agreement with the observed experimental data, and provides insight on the interplay between protein solubility and yield. CONCLUSION: Our work introduces the idea of a self-regulatory circuit for recombinant protein products, and paves the way for processes with reduced external control or monitoring needs. It demonstrates that the library of standard biological parts serves as a valuable resource for initial synthetic blocks that needs to be further refined to be successfully applied in practical problems of biotechnological significance. Finally, the development of a predictive model in conjunction with experimental validation facilitates a better understanding of the underlying dynamics and can be used as a guide to experimental design.

12.
BMC Genomics ; 12: 218, 2011 May 09.
Article in English | MEDLINE | ID: mdl-21554735

ABSTRACT

BACKGROUND: Saccharomyces cerevisiae and Pichia pastoris are two of the most relevant microbial eukaryotic platforms for the production of recombinant proteins. Their known genome sequences enabled several transcriptomic profiling studies under many different environmental conditions, thus mimicking not only perturbations and adaptations which occur in their natural surroundings, but also in industrial processes. Notably, the majority of such transcriptome analyses were performed using non-engineered strains.In this comparative study, the gene expression profiles of S. cerevisiae and P. pastoris, a Crabtree positive and Crabtree negative yeast, respectively, were analyzed for three different oxygenation conditions (normoxic, oxygen-limited and hypoxic) under recombinant protein producing conditions in chemostat cultivations. RESULTS: The major differences in the transcriptomes of S. cerevisiae and P. pastoris were observed between hypoxic and normoxic conditions, where the availability of oxygen strongly affected ergosterol biosynthesis, central carbon metabolism and stress responses, particularly the unfolded protein response. Steady state conditions under low oxygen set-points seemed to perturb the transcriptome of S. cerevisiae to a much lesser extent than the one of P. pastoris, reflecting the major tolerance of the baker's yeast towards oxygen limitation, and a higher fermentative capacity. Further important differences were related to Fab production, which was not significantly affected by oxygen availability in S. cerevisiae, while a clear productivity increase had been previously reported for hypoxically grown P. pastoris. CONCLUSIONS: The effect of three different levels of oxygen availability on the physiology of P. pastoris and S. cerevisiae revealed a very distinct remodelling of the transcriptional program, leading to novel insights into the different adaptive responses of Crabtree negative and positive yeasts to oxygen availability. Moreover, the application of such comparative genomic studies to recombinant hosts grown in different environments might lead to the identification of key factors for efficient protein production.


Subject(s)
Gene Expression Profiling , Oxygen/pharmacology , Pichia/drug effects , Pichia/genetics , Recombinant Proteins/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Bioreactors , Cluster Analysis , Genetic Engineering , Genomics , Humans , Pichia/growth & development , Principal Component Analysis , Saccharomyces cerevisiae/growth & development , Species Specificity , Transcription, Genetic/drug effects
13.
Biotechnol Bioeng ; 108(10): 2403-12, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21557199

ABSTRACT

The demand for recombinant proteins both for biopharmaceutical and technical applications is rapidly growing, and therefore the need to establish highly productive expression systems is steadily increasing. Yeasts, such as Pichia pastoris, are among the widely used production platforms with a strong emphasis on secreted proteins. Protein secretion is a limiting factor of productivity. There is strong evidence that secretion is coupled to specific growth rate (µ) in yeast, being higher at higher µ. For maximum productivity and product titer, high specific secretion rates at low µ would be desired. At high secretion rates cultures contain a large fraction of cells in the G2 and M phases of cell cycle. Consequently, the cell design target of a high fraction of cells in G2 + M phase was achieved by constitutive overexpression of the cyclin gene CLB2. Together with predictive process modeling this reverse engineered production strain improved the space time yield (STY) of an antibody Fab fragment by 18% and the product titer by 53%. This concept was verified with another secreted protein, human trypsinogen.


Subject(s)
Cell Division , G2 Phase , Genetic Engineering/methods , Immunoglobulin Fab Fragments/biosynthesis , Pichia/metabolism , Trypsinogen/metabolism , Cyclin B/biosynthesis , Cyclin B/genetics , Humans , Immunoglobulin Fab Fragments/genetics , Pichia/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Trypsinogen/genetics
14.
Biotechnol Prog ; 27(1): 38-46, 2011.
Article in English | MEDLINE | ID: mdl-21312353

ABSTRACT

Microorganisms encounter diverse stress conditions in their native habitats but also during fermentation processes, which have an impact on industrial process performance. These environmental stresses and the physiological reactions they trigger, including changes in the protein folding/secretion machinery, are highly interrelated. Thus, the investigation of environmental factors, which influence protein expression and secretion is still of great importance. Among all the possible stresses, temperature appears particularly important for bioreactor cultivation of recombinant hosts, as reductions of growth temperature have been reported to increase recombinant protein production in various host organisms. Therefore, the impact of temperature on the secretion of proteins with therapeutic interest, exemplified by a model antibody Fab fragment, was analyzed in five different microbial protein production hosts growing under steady-state conditions in carbon-limited chemostat cultivations. Secretory expression of the heterodimeric antibody Fab fragment was successful in all five microbial host systems, namely Saccharomyces cerevisiae, Pichia pastoris, Trichoderma reesei, Escherichia coli and Pseudoalteromonas haloplanktis. In this comparative analysis we show that a reduction of cultivation temperature during growth at constant growth rate had a positive effect on Fab 3H6 production in three of four analyzed microorganisms, indicating common physiological responses, which favor recombinant protein production in prokaryotic as well as eukaryotic microbes.


Subject(s)
Bacteria/metabolism , Immunoglobulin Fab Fragments/biosynthesis , Temperature , Yeasts/metabolism , Enzyme-Linked Immunosorbent Assay , Species Specificity
15.
Methods Enzymol ; 489: 165-88, 2011.
Article in English | MEDLINE | ID: mdl-21266230

ABSTRACT

Unfolded protein response (UPR) is a major reaction to intrinsic stress of eukaryotic organisms and is also related to environmental stress reactions. Among yeasts, stress regulation has mainly been investigated in Saccharomyces cerevisiae, while other species with biotechnological or medical interest are less well understood. Pichia pastoris as one example has emerged as a favorite production platform for recombinant proteins during the last two decades. UPR and environmental stress are well known to interfere with the production of recombinant proteins as well as other technologically relevant processes, so that the demand for well-documented protocols to measure such stress reactions has strongly increased. Here, we describe protocols for the induction of UPR and osmotic stress, as well as for the quantitative measurement of cellular stress reactions at the levels of transcripts, proteins, and metabolites. As such protocols need to be adapted for a new species of interest, the guidelines presented here should enable researchers to study P. pastoris directly without the hassle to modify standard protocols designed for the model organism S. cerevisiae first.


Subject(s)
Fungal Proteins/genetics , Pichia/genetics , Unfolded Protein Response , Basic-Leucine Zipper Transcription Factors/biosynthesis , Dithiothreitol/pharmacology , Osmolar Concentration , Osmotic Pressure , Recombinant Proteins/biosynthesis , Repressor Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/biosynthesis , Tunicamycin/pharmacology , Unfolded Protein Response/genetics
16.
BMC Syst Biol ; 4: 141, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-20969759

ABSTRACT

BACKGROUND: Yeasts are attractive expression platforms for many recombinant proteins, and there is evidence for an important interrelation between the protein secretion machinery and environmental stresses. While adaptive responses to such stresses are extensively studied in Saccharomyces cerevisiae, little is known about their impact on the physiology of Pichia pastoris. We have recently reported a beneficial effect of hypoxia on recombinant Fab secretion in P. pastoris chemostat cultivations. As a consequence, a systems biology approach was used to comprehensively identify cellular adaptations to low oxygen availability and the additional burden of protein production. Gene expression profiling was combined with proteomic analyses and the 13C isotope labelling based experimental determination of metabolic fluxes in the central carbon metabolism. RESULTS: The physiological adaptation of P. pastoris to hypoxia showed distinct traits in relation to the model yeast S. cerevisiae. There was a positive correlation between the transcriptomic, proteomic and metabolic fluxes adaptation of P. pastoris core metabolism to hypoxia, yielding clear evidence of a strong transcriptional regulation component of key pathways such as glycolysis, pentose phosphate pathway and TCA cycle. In addition, the adaptation to reduced oxygen revealed important changes in lipid metabolism, stress responses, as well as protein folding and trafficking. CONCLUSIONS: This systems level study helped to understand the physiological adaptations of cellular mechanisms to low oxygen availability in a recombinant P. pastoris strain. Remarkably, the integration of data from three different levels allowed for the identification of differences in the regulation of the core metabolism between P. pastoris and S. cerevisiae. Detailed comparative analysis of the transcriptomic data also led to new insights into the gene expression profiles of several cellular processes that are not only susceptible to low oxygen concentrations, but might also contribute to enhanced protein secretion.


Subject(s)
DNA, Recombinant/genetics , Oxygen/metabolism , Pichia/genetics , Pichia/metabolism , Adaptation, Physiological/genetics , Carbon/metabolism , Cell Membrane/metabolism , Citric Acid Cycle , Fungal Proteins/biosynthesis , Gene Expression Profiling , Glycolysis , Hypoxia/genetics , Hypoxia/metabolism , Lipid Metabolism , Pentose Phosphate Pathway , Pichia/physiology , Proteomics , Pyruvates/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Stress, Physiological/genetics , Transcription, Genetic
17.
Metab Eng ; 12(6): 573-80, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20688186

ABSTRACT

Biotin plays an essential role as cofactor for biotin-dependent carboxylases involved in essential metabolic pathways. The cultivation of Pichia pastoris, a methylotrophic yeast that is successfully used as host for the production of recombinant proteins, requires addition of high dosage of biotin. As biotin is the only non-salt media component used during P. pastoris fermentation (apart from the carbon source), nonconformities during protein production processes are usually attributed to poor quality of the added biotin. In order to avoid dismissed production runs due to biotin quality issues, we engineered the biotin-requiring yeast P. pastoris to become a biotin-prototrophic yeast. Integration of four genes involved in the biotin biosynthesis from brewing yeast into the P. pastoris genome rendered P. pastoris biotin-prototrophic. The engineered strain has successfully been used as production host for both intracellular and secreted heterologous proteins in fed-batch processes, employing mineral media without vitamins. Another field of application for these truly prototrophic hosts is the production of biochemicals and small metabolites, where defined mineral media leads to easier purification procedures.


Subject(s)
Biotin/biosynthesis , Biotin/genetics , Pichia/genetics , Pichia/metabolism , Bioengineering , Culture Media , Fermentation , Genetic Vectors , Kinetics , Metabolic Networks and Pathways , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Saccharomyces cerevisiae/metabolism
18.
BMC Genomics ; 11: 207, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20346137

ABSTRACT

BACKGROUND: The effect of osmolarity on cellular physiology has been subject of investigation in many different species. High osmolarity is of importance for biotechnological production processes, where high cell densities and product titers are aspired. Several studies indicated that increased osmolarity of the growth medium can have a beneficial effect on recombinant protein production in different host organisms. Thus, the effect of osmolarity on the cellular physiology of Pichia pastoris, a prominent host for recombinant protein production, was studied in carbon limited chemostat cultures at different osmolarities. Transcriptome and proteome analyses were applied to assess differences upon growth at different osmolarities in both, a wild type strain and an antibody fragment expressing strain. While our main intention was to analyze the effect of different osmolarities on P. pastoris in general, this was complemented by studying it in context with recombinant protein production. RESULTS: In contrast to the model yeast Saccharomyces cerevisiae, the main osmolyte in P. pastoris was arabitol rather than glycerol, demonstrating differences in osmotic stress response as well as energy metabolism. 2D Fluorescence Difference Gel electrophoresis and microarray analysis were applied and demonstrated that processes such as protein folding, ribosome biogenesis and cell wall organization were affected by increased osmolarity. These data indicated that upon increased osmolarity less adaptations on both the transcript and protein level occurred in a P. pastoris strain, secreting the Fab fragment, compared with the wild type strain. No transcriptional activation of the high osmolarity glycerol (HOG) pathway was observed at steady state conditions. Furthermore, no change of the specific productivity of recombinant Fab was observed at increased osmolarity. CONCLUSION: These data point out that the physiological response to increased osmolarity is different to S. cerevisiae. Increased osmolarity resulted in an unfolded protein response (UPR) like response in P. pastoris and lead to pre-conditioning of the recombinant Fab producing strain of P. pastoris to growth at high osmolarity. The current data demonstrate a strong similarity of environmental stress response mechanisms and recombinant protein related stresses. Therefore, these results might be used in future strain and bioprocess engineering of this biotechnologically relevant yeast.


Subject(s)
Pichia/metabolism , Unfolded Protein Response , Fungal Proteins/analysis , Gene Expression Profiling , Osmolar Concentration , Pichia/growth & development , Proteome/analysis , Recombinant Proteins/metabolism , Sodium Chloride/metabolism , Trehalose/metabolism
19.
Microb Cell Fact ; 8: 29, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19490607

ABSTRACT

BACKGROUND: Pichia pastoris is widely used as a production platform for heterologous proteins and model organism for organelle proliferation. Without a published genome sequence available, strain and process development relied mainly on analogies to other, well studied yeasts like Saccharomyces cerevisiae. RESULTS: To investigate specific features of growth and protein secretion, we have sequenced the 9.4 Mb genome of the type strain DSMZ 70382 and analyzed the secretome and the sugar transporters. The computationally predicted secretome consists of 88 ORFs. When grown on glucose, only 20 proteins were actually secreted at detectable levels. These data highlight one major feature of P. pastoris, namely the low contamination of heterologous proteins with host cell protein, when applying glucose based expression systems. Putative sugar transporters were identified and compared to those of related yeast species. The genome comprises 2 homologs to S. cerevisiae low affinity transporters and 2 to high affinity transporters of other Crabtree negative yeasts. Contrary to other yeasts, P. pastoris possesses 4 H+/glycerol transporters. CONCLUSION: This work highlights significant advantages of using the P. pastoris system with glucose based expression and fermentation strategies. As only few proteins and no proteases are actually secreted on glucose, it becomes evident that cell lysis is the relevant cause of proteolytic degradation of secreted proteins. The endowment with hexose transporters, dominantly of the high affinity type, limits glucose uptake rates and thus overflow metabolism as observed in S. cerevisiae. The presence of 4 genes for glycerol transporters explains the high specific growth rates on this substrate and underlines the suitability of a glycerol/glucose based fermentation strategy. Furthermore, we present an open access web based genome browser http://www.pichiagenome.org.

20.
FEMS Yeast Res ; 9(3): 335-48, 2009 May.
Article in English | MEDLINE | ID: mdl-19341379

ABSTRACT

Systems biotechnology has been established as a highly potent tool for bioprocess development in recent years. The applicability to complex metabolic processes such as protein synthesis and secretion, however, is still in its infancy. While yeasts are frequently applied for heterologous protein production, more progress in this field has been achieved for bacterial and mammalian cell culture systems than for yeasts. A critical comparison between different protein production systems, as provided in this review, can aid in assessing the potentials and pitfalls of applying systems biotechnology concepts to heterologous protein producing yeasts. Apart from modelling, the methodological basis of systems biology strongly relies on postgenomic methods. However, this methodology is rapidly moving so that more global data with much higher sensitivity will be achieved in near future. The development of next generation sequencing technology enables an unexpected revival of genomic approaches, providing new potential for evolutionary engineering and inverse metabolic engineering.


Subject(s)
Biotechnology/methods , Genetic Engineering/methods , Recombinant Proteins/biosynthesis , Yeasts/genetics , Yeasts/metabolism , Metabolic Networks and Pathways/genetics , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...