Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
PLoS One ; 18(1): e0280184, 2023.
Article in English | MEDLINE | ID: mdl-36649354

ABSTRACT

OBJECTIVE: To examine the association between gestational age, telomere length (TL) and rate of shortening in newborns. STUDY DESIGN: Genomic DNA was isolated from buccal samples of 39 term infants at birth and one year and 32 preterm infants at birth, term-adjusted age (40 weeks post-conception) and age one-year corrected for gestational duration. Telomere length was measured by quantitative real-time PCR. Demographic and clinical data were collected during clinic or research visits and from hospital records. Socioeconomic status was estimated using the deprivation category (DEPCAT) scores derived from the Carstairs score of the subject's postal code. RESULTS: At birth, preterm infants had longer telomeres than infants born at term. However, there was no difference in telomere length between preterm infants and term infants at one year of age, implying that the rate of telomere shortening was greater in pre-term than term infants. Interestingly, TL at age 40 weeks post-conception in preterm infants was significantly longer than term infant TL at birth, suggesting that time since conception is not the only factor that affects rate of shortening. Several factors, including sex, fetal growth restriction, maternal age, maternal booking body mass index (BMI), mother education level and DEPCAT score, also differed between the preterm and term groups. CONCLUSIONS: Preterm infants have longer telomeres than term infants at birth. In the studied cohort, the rate of telomere shortening was greater in the premature group compared with the term infants. This finding agrees with previous studies using cord blood, suggesting that the longer TL in premature infants detected at birth do not persist and demonstrating that use of saliva DNA is acceptable for studies of telomere dynamics in infants. However, that the TL at age 40 weeks post-conception in preterm is longer than term infants at birth suggests that biological factors other than time since conception also affect rate of shortening.


Subject(s)
Infant, Premature , Telomere Shortening , Infant , Female , Humans , Infant, Newborn , Gestational Age , Maternal Age , Telomere/genetics
2.
J Dev Orig Health Dis ; 13(3): 390-394, 2022 06.
Article in English | MEDLINE | ID: mdl-34134812

ABSTRACT

Metformin is widely used in pregnancy, despite lack of long-term safety for children. We hypothesised that metformin exposure in utero is associated with increased cardiovascular risk. We tested this hypothesis in a follow-up study of children born to obese mothers who had participated in a randomised controlled trial of metformin versus placebo in pregnancy (EMPOWaR). We measured body composition, peripheral blood pressure (BP), arterial pulse wave velocity and central haemodynamics (central BP and augmentation index) using an oscillometric device in 40 children of mean (SD) age 5.78 (0.93) years, exposed to metformin (n = 19) or placebo (n = 21) in utero. There were no differences in any of the anthropometric or vascular measures between metformin and placebo-exposed groups in univariate analyses, or after adjustment for potential confounders including the child's behaviour, diet and activity levels. Post-hoc sample size calculation indicated we would have detected large clinically significant differences between the groups but would need an unfeasible large number to detect possible subtle differences in key cardiovascular risk parameters in children at this age of follow-up. Our findings suggest no evidence of increased cardiovascular risk in children born to obese mothers who took metformin in pregnancy and increase available knowledge of the long-term safety of metformin on childhood outcomes.


Subject(s)
Cardiovascular Diseases , Metformin , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Child , Child, Preschool , Female , Follow-Up Studies , Heart Disease Risk Factors , Humans , Metformin/adverse effects , Obesity/chemically induced , Obesity/complications , Pregnancy , Pulse Wave Analysis , Risk Factors
3.
Brain Behav Immun Health ; 13: 100219, 2021 May.
Article in English | MEDLINE | ID: mdl-34589738

ABSTRACT

INTRODUCTION: Preterm birth (PTB) is closely associated with atypical cerebral cortical development and cognitive impairment. Early exposure to extrauterine life often results in atypical environmental and biological experiences that co-occur, including early life stress (ELS) and systemic inflammation. Understanding how these experiences interact to shape cortical development is an essential prerequisite to developing therapeutic interventions that will work in the complex postnatal environment of the preterm infant. Here, we studied the effects of a murine model of infection and ELS on the neonatal cortex transcriptome. METHODS: We used a mouse model of infection (1 â€‹mg/kg LPS at postnatal day (P)3) +/- ELS (modified maternal separation; MMS on days P4-P6) at timepoints with neurodevelopmental relevance to PTB. We used 4 groups: control, LPS, MMS and LPS â€‹+ â€‹MMS. Cortices were dissected at P6 for 3'RNA sequencing. RESULTS: LPS exposure resulted in reduced weight gain and increased expression of inflammation-associated genes in the brain. More genes were differentially expressed following LPS (15) and MMS (29) than with LPS â€‹+ â€‹MMS (8). There was significant overlap between the LPS and MMS datasets, particularly amongst upregulated genes, and when comparing LPS and MMS datasets with LPS â€‹+ â€‹MMS. Gene Ontology terms related to the extracellular matrix and cytokine response were enriched following MMS, but not following LPS or LPS â€‹+ â€‹MMS. 26 Reactome pathways were enriched in the LPS group, none of which were enriched in the LPS â€‹+ â€‹MMS group. Finally, a rank-rank hypergeometric overlap test showed similarities, particularly in upregulated genes, in the LPS and MMS conditions, indicating shared mechanisms. CONCLUSION: LPS and MMS interact to modify the cortical transcriptome in the neonatal period. This has important implications for understanding the neural basis of atypical cortical development associated with early exposure to extrauterine life.

4.
Epigenetics Chromatin ; 14(1): 31, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193254

ABSTRACT

Exposure to early life stress (ELS) during childhood or prenatally increases the risk of future psychiatric disorders. The effect of stress exposure during the neonatal period is less well understood. In preterm infants, exposure to invasive procedures is associated with altered brain development and future stress responses suggesting that the neonatal period could be a key time for the programming of mental health. Previous studies suggest that ELS affects the hypothalamic epigenome, making it a good candidate to mediate these effects. In this study, we used a mouse model of early life stress (modified maternal separation; MMS). We hypothesised MMS would affect the hypothalamic transcriptome and DNA methylome, and impact on adult behaviour. MMS involved repeated stimulation of pups for 1.5 h/day, whilst separated from their mother, from postnatal day (P) 4-6. 3'mRNA sequencing and DNA methylation immunoprecipitation (meDIP) sequencing were performed on hypothalamic tissue at P6. Behaviour was assessed with the elevated plus, open field mazes and in-cage monitoring at 3-4 months of age. MMS was only associated with subtle changes in gene expression, but there were widespread alterations in DNA methylation. Notably, differentially methylated regions were enriched for synapse-associated loci. MMS resulted in hyperactivity in the elevated plus and open field mazes, but in-cage monitoring revealed that this was not representative of habitual hyperactivity. ELS has marked effects on DNA methylation in the hypothalamus in early life and results in stress-specific hyperactivity in young adulthood. These results have implications for the understanding of ELS-mediated effects on brain development.


Subject(s)
Adverse Childhood Experiences , DNA Methylation , Adult , Animals , Humans , Hypothalamus , Infant, Newborn , Infant, Premature , Maternal Deprivation , Mice , Young Adult
5.
STAR Protoc ; 2(2): 100493, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33997813

ABSTRACT

This protocol describes the production of hepatocyte-like cells (HLCs) from human pluripotent stem cells and how to induce hepatic steatosis, a condition characterized by intracellular lipid accumulation. Following differentiation to an HLC phenotype, intracellular lipid accumulation is induced with a steatosis induction cocktail, allowing the user to examine the cellular processes that underpin hepatic steatosis. Furthermore, the renewable nature of our system, on a defined genetic background, permits in-depth mechanistic analysis, which may facilitate therapeutic target identification in the future. For complete details on the use and execution of this protocol, please refer to Sinton et al. (2021).


Subject(s)
Cell Differentiation , Fatty Liver/metabolism , Hepatocytes/metabolism , Models, Biological , Pluripotent Stem Cells/metabolism , Fatty Liver/pathology , Hepatocytes/pathology , Humans , Pluripotent Stem Cells/pathology
6.
Sci Rep ; 11(1): 9092, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33907288

ABSTRACT

Neonatal encephalopathy due to hypoxia-ischemia is associated with adverse neurodevelopmental effects. The involvement of branched chain amino acids (BCAAs) in this is largely unexplored. Transport of BCAAs at the plasma membrane is facilitated by SLC7A5/SLC3A2, which increase with hypoxia. We hypothesized that hypoxia would alter BCAA transport and metabolism in the neonatal brain. We investigated this using an organotypic forebrain slice culture model with, the SLC7A5/SLC3A2 inhibitor, 2-Amino-2-norbornanecarboxylic acid (BCH) under normoxic or hypoxic conditions. We subsequently analysed the metabolome and candidate gene expression. Hypoxia was associated with increased expression of SLC7A5 and SLC3A2 and an increased tissue abundance of BCAAs. Incubation of slices with 13C-leucine confirmed that this was due to increased cellular uptake. BCH had little effect on metabolite abundance under normoxic or hypoxic conditions. This suggests hypoxia drives increased cellular uptake of BCAAs in the neonatal mouse forebrain, and membrane mediated transport through SLC7A5 and SLC3A2 is not essential for this process. This indicates mechanisms exist to generate the compounds required to maintain essential metabolism in the absence of external nutrient supply. Moreover, excess BCAAs have been associated with developmental delay, providing an unexplored mechanism of hypoxia mediated pathogenesis in the developing forebrain.


Subject(s)
Fusion Regulatory Protein 1, Heavy Chain/metabolism , Hypoxia/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Prosencephalon/physiology , Adaptation, Biological , Amino Acids, Branched-Chain/metabolism , Animals , Animals, Newborn , Biological Transport , Carboxylic Acids/pharmacology , Cell Hypoxia , Female , Fusion Regulatory Protein 1, Heavy Chain/genetics , Gene Expression Regulation , Hypoxia/genetics , Large Neutral Amino Acid-Transporter 1/genetics , Male , Mice, Inbred C57BL , Norbornanes/pharmacology , Organ Culture Techniques , Prosencephalon/drug effects
7.
Transl Psychiatry ; 11(1): 88, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526782

ABSTRACT

Lasting effects of adversity, such as exposure to childhood adversity (CA) on disease risk, may be embedded via epigenetic mechanisms but findings from human studies investigating the main effects of such exposure on epigenetic measures, including DNA methylation (DNAm), are inconsistent. Studies in perinatal tissues indicate that variability of DNAm at birth is best explained by the joint effects of genotype and prenatal environment. Here, we extend these analyses to postnatal stressors. We investigated the contribution of CA, cis genotype (G), and their additive (G + CA) and interactive (G × CA) effects to DNAm variability in blood or saliva from five independent cohorts with a total sample size of 1074 ranging in age from childhood to late adulthood. Of these, 541 were exposed to CA, which was assessed retrospectively using self-reports or verified through social services and registries. For the majority of sites (over 50%) in the adult cohorts, variability in DNAm was best explained by G + CA or G × CA but almost never by CA alone. Across ages and tissues, 1672 DNAm sites showed consistency of the best model in all five cohorts, with G × CA interactions explaining most variance. The consistent G × CA sites mapped to genes enriched in brain-specific transcripts and Gene Ontology terms related to development and synaptic function. Interaction of CA with genotypes showed the strongest contribution to DNAm variability, with stable effects across cohorts in functionally relevant genes. This underscores the importance of including genotype in studies investigating the impact of environmental factors on epigenetic marks.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Adult , Epigenomics , Female , Genotype , Humans , Infant, Newborn , Pregnancy , Retrospective Studies
8.
iScience ; 24(1): 101931, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33409477

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is currently the most prevalent form of liver disease worldwide. This term encompasses a spectrum of pathologies, from benign hepatic steatosis to non-alcoholic steatohepatitis, which have, to date, been challenging to model in the laboratory setting. Here, we present a human pluripotent stem cell (hPSC)-derived model of hepatic steatosis, which overcomes inherent challenges of current models and provides insights into the metabolic rewiring associated with steatosis. Following induction of macrovesicular steatosis in hepatocyte-like cells using lactate, pyruvate, and octanoate (LPO), respirometry and transcriptomic analyses revealed compromised electron transport chain activity. 13C isotopic tracing studies revealed enhanced TCA cycle anaplerosis, with concomitant development of a compensatory purine nucleotide cycle shunt leading to excess generation of fumarate. This model of hepatic steatosis is reproducible, scalable, and overcomes the challenges of studying mitochondrial metabolism in currently available models.

9.
Early Hum Dev ; 150: 105190, 2020 11.
Article in English | MEDLINE | ID: mdl-32948364

ABSTRACT

An optimal early life environment is crucial for ensuring ideal neurodevelopmental outcomes. Brain development consists of a finely tuned series of spatially and temporally constrained events, which may be affected by exposure to a sub-optimal intra-uterine environment. Evidence suggests brain development may be particularly vulnerable to factors such as maternal nutrition, infection and stress during pregnancy. In this review, we discuss how maternal factors such as these can affect brain development and outcome in offspring, and we also identify evidence which suggests that the outcome can, in many cases, be stratified by socio-economic status (SES), with individuals in lower brackets typically having a worse outcome. We consider the relevant epidemiological evidence and draw parallels to mechanisms suggested by preclinical work where appropriate. We also discuss possible transgenerational effects of these maternal factors and the potential mechanisms involved. We conclude that modifiable factors such as maternal nutrition, infection and stress are important contributors to atypical brain development and that SES also likely has a key role.


Subject(s)
Brain/embryology , Maternal Nutritional Physiological Phenomena , Pregnancy Complications, Infectious/epidemiology , Prenatal Exposure Delayed Effects/epidemiology , Stress, Psychological/epidemiology , Brain/physiology , Epigenesis, Genetic , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/genetics , Prenatal Exposure Delayed Effects/genetics , Stress, Psychological/genetics
10.
Hypertension ; 76(1): 195-205, 2020 07.
Article in English | MEDLINE | ID: mdl-32520614

ABSTRACT

We conducted an epigenome-wide association study meta-analysis on blood pressure (BP) in 4820 individuals of European and African ancestry aged 14 to 69. Genome-wide DNA methylation data from peripheral leukocytes were obtained using the Infinium Human Methylation 450k BeadChip. The epigenome-wide association study meta-analysis identified 39 BP-related CpG sites with P<1×10-5. In silico replication in the CHARGE consortium of 17 010 individuals validated 16 of these CpG sites. Out of the 16 CpG sites, 13 showed novel association with BP. Conversely, out of the 126 CpG sites identified as being associated (P<1×10-7) with BP in the CHARGE consortium, 21 were replicated in the current study. Methylation levels of all the 34 CpG sites that were cross-validated by the current study and the CHARGE consortium were heritable and 6 showed association with gene expression. Furthermore, 9 CpG sites also showed association with BP with P<0.05 and consistent direction of the effect in the meta-analysis of the Finnish Twin Cohort (199 twin pairs and 4 singletons; 61% monozygous) and the Netherlands Twin Register (266 twin pairs and 62 singletons; 84% monozygous). Bivariate quantitative genetic modeling of the twin data showed that a majority of the phenotypic correlations between methylation levels of these CpG sites and BP could be explained by shared unique environmental rather than genetic factors, with 100% of the correlations of systolic BP with cg19693031 (TXNIP) and cg00716257 (JDP2) determined by environmental effects acting on both systolic BP and methylation levels.


Subject(s)
Blood Pressure/genetics , CpG Islands/genetics , DNA Methylation , Epigenome/genetics , Essential Hypertension/genetics , Gene-Environment Interaction , Genome-Wide Association Study , Adolescent , Adult , Aged , Black People/statistics & numerical data , Body Mass Index , Cohort Studies , Diseases in Twins/epidemiology , Diseases in Twins/genetics , Essential Hypertension/epidemiology , Essential Hypertension/ethnology , Female , Gene Expression , Humans , Male , Middle Aged , Twin Studies as Topic , White People/statistics & numerical data , Young Adult
11.
Nat Commun ; 11(1): 3097, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32555194

ABSTRACT

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass, yet unlike white or brown adipose tissues (WAT or BAT) its metabolic functions remain unclear. Herein, we address this critical gap in knowledge. Our transcriptomic analyses revealed that BMAT is distinct from WAT and BAT, with altered glucose metabolism and decreased insulin responsiveness. We therefore tested these functions in mice and humans using positron emission tomography-computed tomography (PET/CT) with 18F-fluorodeoxyglucose. This revealed that BMAT resists insulin- and cold-stimulated glucose uptake, while further in vivo studies showed that, compared to WAT, BMAT resists insulin-stimulated Akt phosphorylation. Thus, BMAT is functionally distinct from WAT and BAT. However, in humans basal glucose uptake in BMAT is greater than in axial bones or subcutaneous WAT and can be greater than that in skeletal muscle, underscoring the potential of BMAT to influence systemic glucose homeostasis. These PET/CT studies characterise BMAT function in vivo, establish new methods for BMAT analysis, and identify BMAT as a distinct, major adipose tissue subtype.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Bone Marrow/metabolism , Glucose/metabolism , Animals , Blotting, Western , Female , Homeostasis/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Positron-Emission Tomography , Rats , Skeleton/metabolism
12.
Neurosci Biobehav Rev ; 113: 133-156, 2020 06.
Article in English | MEDLINE | ID: mdl-32151655

ABSTRACT

MRI has enhanced our capacity to understand variations in brain structure and function conferred by the genome. We identified 60 studies that report associations between DNA methylation (DNAm) and human brain structure/function. Forty-three studies measured candidate loci DNAm; seventeen measured epigenome-wide DNAm. MRI features included region-of-interest and whole-brain structural, diffusion and functional imaging features. The studies report DNAm-MRI associations for: neurodevelopment and neurodevelopmental disorders; major depression and suicidality; alcohol use disorder; schizophrenia and psychosis; ageing, stroke, ataxia and neurodegeneration; post-traumatic stress disorder; and socio-emotional processing. Consistency between MRI features and differential DNAm is modest. Sources of bias: variable inclusion of comparator groups; different surrogate tissues used; variation in DNAm measurement methods; lack of control for genotype and cell-type composition; and variations in image processing. Knowledge of MRI features associated with differential DNAm may improve understanding of the role of DNAm in brain health and disease, but caution is required because conventions for linking DNAm and MRI data are not established, and clinical and methodological heterogeneity in existing literature is substantial.


Subject(s)
DNA Methylation , Epigenome , Brain/diagnostic imaging , Emotions , Epigenesis, Genetic , Genotype , Humans
13.
BMJ Open ; 10(3): e035854, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32139495

ABSTRACT

INTRODUCTION: Preterm birth is closely associated with altered brain development and is a leading cause of neurodevelopmental, cognitive and behavioural impairments across the life course. We aimed to investigate neuroanatomic variation and adverse outcomes associated with preterm birth by studying a cohort of preterm infants and controls born at term using brain MRI linked to biosamples and clinical, environmental and neuropsychological data. METHODS AND ANALYSIS: Theirworld Edinburgh Birth Cohort is a prospective longitudinal cohort study at the University of Edinburgh. We plan to recruit 300 infants born at <33 weeks of gestational age (GA) and 100 healthy control infants born after 37 weeks of GA. Multiple domains are assessed: maternal and infant clinical and demographic information; placental histology; immunoregulatory and trophic proteins in umbilical cord and neonatal blood; brain macrostructure and microstructure from structural and diffusion MRI (dMRI); DNA methylation; hypothalamic-pituitary-adrenal axis activity; social cognition, attention and processing speed from eye tracking during infancy and childhood; neurodevelopment; gut and respiratory microbiota; susceptibility to viral infections; and participant experience. Main analyses include creation of novel methods for extracting information from neonatal structural and dMRI, regression analyses of predictors of brain maldevelopment and neurocognitive outcome associated with preterm birth, and determination of the quantitative predictive performance of MRI and other early life factors for childhood outcome. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the National Research Ethics Service (NRES), South East Scotland Research Ethics Committee (NRES numbers 11/55/0061 and 13/SS/0143 (phase I) and 16/SS/0154 (phase II)), and NHS Lothian Research and Development (2016/0255). Results are disseminated through open access journals, scientific meetings, social media, newsletters anda study website (www.tebc.ed.ac.uk), and we engage with the University of Edinburgh public relations and media office to ensure maximum publicity and benefit.


Subject(s)
Child Development , Cognition , Premature Birth , Case-Control Studies , Child, Preschool , Developmental Disabilities/diagnosis , Female , Humans , Infant , Infant, Newborn , Infant, Premature , Longitudinal Studies , Male , Prospective Studies , Scotland , Surveys and Questionnaires
14.
Epigenetics ; 15(1-2): 61-71, 2020.
Article in English | MEDLINE | ID: mdl-31389294

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is now the commonest cause of liver disease in developed countries affecting 25-33% of the general population and up to 75% of those with obesity. Recent data suggest that alterations in DNA methylation may be related to NAFLD pathogenesis and progression and we have previously shown that dynamic changes in the cell lineage identifier 5-hydroxymethylcytosine (5hmC) may be important in the pathogenesis of liver disease. We used a model of diet-induced obesity, maintaining male mice on a high-fat diet (HFD) to generate hepatic steatosis. We profiled hepatic gene expression, global and locus-specific 5hmC and additionally investigated the effects of weight loss on the phenotype. HFD led to increased weight gain, fasting hyperglycaemia, glucose intolerance, insulin resistance and hepatic periportal macrovesicular steatosis. Diet-induced hepatic steatosis associated with reversible 5hmC changes at a discrete number of functionally important genes. We propose that 5hmC profiles are a useful signature of gene transcription and a marker of cell state in NAFLD and suggest that 5hmC profiles hold potential as a biomarker of abnormal liver physiology.


Subject(s)
DNA Methylation , Non-alcoholic Fatty Liver Disease/genetics , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Animals , Diet, High-Fat/adverse effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Phenotype , Transcriptome
15.
Transl Psychiatry ; 9(1): 330, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819033

ABSTRACT

Impaired social function is a core feature of many psychiatric illnesses. Adverse experiences during childhood increase risk for mental illness, however it is currently unclear whether stress early in life plays a direct role in the development of social difficulties. Using a rat model of pre-pubertal stress (PPS), we investigated effects on social behaviour, oxytocin and arginine vasopressin (AVP) in the periphery (plasma) and centrally in the paraventricular and supraoptic hypothalamic nuclei. We also explored social performance and AVP expression (plasma) in participants with borderline personality disorder (BPD) who experienced a high incidence of childhood stress. Social behaviour was impaired and AVP expression increased in animals experiencing PPS and participants with BPD. Behavioural deficits in animals were rescued through administration of the AVPR1a antagonist Relcovaptan (SR49059). AVP levels and recognition of negative emotions were significantly correlated in BPD participants only. In conclusion, early life stress plays a role in the precipitation of social dysfunction, and AVP mediates at least part of this effect.


Subject(s)
Adverse Childhood Experiences , Arginine Vasopressin/metabolism , Borderline Personality Disorder/metabolism , Borderline Personality Disorder/physiopathology , Paraventricular Hypothalamic Nucleus/metabolism , Social Behavior , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Supraoptic Nucleus/metabolism , Adult , Aged , Animals , Antidiuretic Hormone Receptor Antagonists/pharmacology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Disease Models, Animal , Female , Humans , Indoles/pharmacology , Male , Middle Aged , Neurophysins/metabolism , Protein Precursors/metabolism , Pyrrolidines/pharmacology , Rats , Sexual Maturation/physiology , Vasopressins/metabolism , Young Adult
17.
Clin Epigenetics ; 11(1): 104, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31319896

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is estimated to affect 24% of the global adult population. NAFLD is a major risk factor for the development of cirrhosis and hepatocellular carcinoma, as well as being strongly associated with type 2 diabetes and cardiovascular disease. It has been proposed that up to 88% of obese adults have NAFLD, and with global obesity rates increasing, this disease is set to become even more prevalent. Despite intense research in this field, the molecular processes underlying the pathology of NAFLD remain poorly understood. Hepatic intracellular lipid accumulation may lead to dysregulated tricarboxylic acid (TCA) cycle activity and associated alterations in metabolite levels. The TCA cycle metabolites alpha-ketoglutarate, succinate and fumarate are allosteric regulators of the alpha-ketoglutarate-dependent dioxygenase family of enzymes. The enzymes within this family have multiple targets, including DNA and chromatin, and thus may be capable of modulating gene transcription in response to intracellular lipid accumulation through alteration of the epigenome. In this review, we discuss what is currently understood in the field and suggest areas for future research which may lead to the development of novel preventative or therapeutic interventions for NAFLD.


Subject(s)
Epigenomics/methods , Non-alcoholic Fatty Liver Disease/genetics , Transcription, Genetic , Citric Acid Cycle , Epigenesis, Genetic , Gene Expression Regulation , Humans , Non-alcoholic Fatty Liver Disease/metabolism
18.
Proc Natl Acad Sci U S A ; 116(23): 11370-11379, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31113877

ABSTRACT

Aging and psychosocial stress are associated with increased inflammation and disease risk, but the underlying molecular mechanisms are unclear. Because both aging and stress are also associated with lasting epigenetic changes, a plausible hypothesis is that stress along the lifespan could confer disease risk through epigenetic effects on molecules involved in inflammatory processes. Here, by combining large-scale analyses in human cohorts with experiments in cells, we report that FKBP5, a protein implicated in stress physiology, contributes to these relations. Across independent human cohorts (total n > 3,000), aging synergized with stress-related phenotypes, measured with childhood trauma and major depression questionnaires, to epigenetically up-regulate FKBP5 expression. These age/stress-related epigenetic effects were recapitulated in a cellular model of replicative senescence, whereby we exposed replicating human fibroblasts to stress (glucocorticoid) hormones. Unbiased genome-wide analyses in human blood linked higher FKBP5 mRNA with a proinflammatory profile and altered NF-κB-related gene networks. Accordingly, experiments in immune cells showed that higher FKBP5 promotes inflammation by strengthening the interactions of NF-κB regulatory kinases, whereas opposing FKBP5 either by genetic deletion (CRISPR/Cas9-mediated) or selective pharmacological inhibition prevented the effects on NF-κB. Further, the age/stress-related epigenetic signature enhanced FKBP5 response to NF-κB through a positive feedback loop and was present in individuals with a history of acute myocardial infarction, a disease state linked to peripheral inflammation. These findings suggest that aging/stress-driven FKBP5-NF-κB signaling mediates inflammation, potentially contributing to cardiovascular risk, and may thus point to novel biomarker and treatment possibilities.


Subject(s)
Aging/genetics , Cardiovascular Diseases/genetics , Epigenesis, Genetic/genetics , Inflammation/genetics , NF-kappa B/genetics , Stress, Psychological/genetics , Tacrolimus Binding Proteins/genetics , Up-Regulation/genetics , Cellular Senescence/genetics , Child, Preschool , Depressive Disorder, Major/genetics , Female , Genome-Wide Association Study/methods , Humans , Male , Risk Factors , Signal Transduction/genetics
19.
Philos Trans R Soc Lond B Biol Sci ; 374(1770): 20180118, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30966887

ABSTRACT

Numerous studies in humans and in animal models have demonstrated that exposure to adverse environmental conditions in early life results in long-term structural and functional changes in an organism, increasing the risk of cardiometabolic, neurobehavioural and reproductive disorders in later life. Such effects are not limited to the first generation offspring but may be transmitted to a second or a number of subsequent generations, through non-genomic mechanisms. While the transmission of 'programmed' effects through the maternal line could occur as a consequence of multiple influences, for example, altered maternal physiology, the inheritance of effects through the male line is more difficult to explain and there is much interest in a potential role for transgenerational epigenetic inheritance. In this review, we will discuss the mechanisms by which induced effects may be transmitted through the paternal lineage, with a particular focus on the role of epigenetic inheritance. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.


Subject(s)
Epigenesis, Genetic/physiology , Mammals/genetics , Paternal Inheritance/physiology , Animals , Germ Cells , Male
20.
Philos Trans R Soc Lond B Biol Sci ; 374(1770): 20180121, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30966892

ABSTRACT

Preterm birth is a significant public health problem worldwide, leading to substantial mortality in the newborn period, and a considerable burden of complications longer term, for affected infants and their carers. The fact that it is so common, and rates vary between different populations, raising the question of whether in some circumstances it might be an adaptive trait. In this review, we outline some of the evolutionary explanations put forward for preterm birth. We specifically address the hypothesis of the predictive adaptive response, setting it in the context of the Developmental Origins of Health and Disease, and explore the predictions that this hypothesis makes for the potential causes and consequences of preterm birth. We describe how preterm birth can be triggered by a range of adverse environmental factors, including nutrition, stress and relative socioeconomic status. Examining the literature for any associated longer-term phenotypic changes, we find no strong evidence for a marked temporal shift in the reproductive life-history trajectory, but more persuasive evidence for a re-programming of the cardiovascular and endocrine system, and a range of effects on neurodevelopment. Distinguishing between preterm birth as a predictive, rather than immediate adaptive response will depend on the demonstration of a positive effect of these alterations in developmental trajectories on reproductive fitness. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.


Subject(s)
Adaptation, Biological , Biological Evolution , Premature Birth/etiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...