Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38900860

ABSTRACT

Endurance exercise training improves exercise capacity as well as skeletal muscle and whole-body metabolism, which are hallmarks of high quality-of-life and healthy aging. However, its mechanisms are not yet fully understood. Exercise-induced mitophagy has merged as an important step in mitochondrial remodeling. ULK1, specifically its activation by phosphorylation at serine 555, was discovered as an autophagy driver and to be important for energetic stress-induced mitophagy in skeletal muscle, making it a potential mediator the benefit of exercise on mitochondrial remodeling. Here, we employed CRISPR/Cas9-mediated gene editing and generated knock-in mice with a serine-to-alanine mutation of Ulk1. We now report that these mice displayed normal endurance capacity and cardiac function at baseline with a mild impairment of energy metabolism as indicated by accelerated increase of respiratory exchange ratio (RER) during acute exercise stress; however, this was completely corrected by 8 weeks of voluntary running. Ulk1-S555A mice also completely retained the exercise-mediated improvements of endurance capacity. We conclude that Ulk1 phosphorylation at S555 is not required for exercise-mediated improvements of endurance and metabolic capacity in healthy mice.

2.
Function (Oxf) ; 5(1): zqad066, 2024.
Article in English | MEDLINE | ID: mdl-38111538

ABSTRACT

Alzheimer's disease (AD) develops along a continuum that spans years prior to diagnosis. Decreased muscle function and mitochondrial respiration occur years earlier in those that develop AD; however, it is unknown what causes these peripheral phenotypes in a disease of the brain. Exercise promotes muscle, mitochondria, and cognitive health and is proposed to be a potential therapeutic for AD, but no study has investigated how skeletal muscle adapts to exercise training in an AD-like context. Utilizing 5xFAD mice, an AD model that develops ad-like pathology and cognitive impairments around 6 mo of age, we examined in vivo neuromuscular function and exercise adapations (mitochondrial respiration and RNA sequencing) before the manifestation of overt cognitive impairment. We found 5xFAD mice develop neuromuscular dysfunction beginning as early as 4 mo of age, characterized by impaired nerve-stimulated muscle torque production and compound nerve action potential of the sciatic nerve. Furthermore, skeletal muscle in 5xFAD mice had altered, sex-dependent, adaptive responses (mitochondrial respiration and gene expression) to exercise training in the absence of overt cognitive impairment. Changes in peripheral systems, specifically neural communication to skeletal muscle, may be harbingers for AD and have implications for lifestyle interventions, like exercise, in AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Mice , Animals , Alzheimer Disease/genetics , Mice, Transgenic , Brain/metabolism , Cognitive Dysfunction/etiology , Mitochondria/metabolism
3.
J Appl Physiol (1985) ; 134(3): 515-520, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36656981

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia affecting approximately 6.5 million people in the United States alone. The development of AD progresses over a span of years to possibly decades before resulting in cognitive impairment and clinically diagnosed AD. The time leading up to a clinical diagnosis is known as the preclinical phase, a time in which recent literature has noted a more severe loss of body mass and more specifically lean muscle mass and strength prior to diagnosis. Mitochondria dysfunction in neurons is also closely associated with AD, and mitochondrial dysfunction has been seen to occur in skeletal muscle with mild cognitive impairment prior to AD manifestation. Evidence from animal models of AD suggests a close link among skeletal muscle mass, mitochondria function, and cognition. Exercise is a powerful stimulus for improving mitochondria function and muscle health, and its benefits to cognition have been suggested as a possible therapeutic strategy for AD. However, evidence for beneficial effects of exercise in AD-afflicted populations and animal models has produced conflicting results. In this mini-review, we discuss these findings and highlight potential avenues for further investigation that may lead to the implementation of exercise as a therapeutic intervention to delay or prevent the development of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Animals , Cognition/physiology , Exercise , Muscle, Skeletal
4.
Front Cell Dev Biol ; 10: 987317, 2022.
Article in English | MEDLINE | ID: mdl-36105350

ABSTRACT

The energetic requirements of skeletal muscle to sustain movement, as during exercise, is met largely by mitochondria, which form an intricate, interconnected reticulum. Maintenance of a healthy mitochondrial reticulum is essential for skeletal muscle function, suggesting quality control pathways are spatially governed. Mitophagy, the process by which damaged and/or dysfunctional regions of the mitochondrial reticulum are removed and degraded, has emerged as an integral part of the molecular response to exercise. Upregulation of mitophagy in response to acute exercise is directly connected to energetic sensing mechanisms through AMPK. In this review, we discuss the connection of mitophagy to muscle energetics and how AMPK may spatially control mitophagy through multiple potential means.

5.
Brain ; 145(7): 2332-2346, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35134125

ABSTRACT

Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures. We propose that activation of thalamic AMP-activated protein kinase, a sensor of cellular energetic stress and potentiator of metabotropic GABAB-receptor function, is a significant driver of hypoglycaemia-induced spike-wave seizures. We show that AMP-activated protein kinase augments postsynaptic GABAB-receptor-mediated currents in thalamocortical neurons and strengthens epileptiform network activity evoked in thalamic brain slices. Selective thalamic AMP-activated protein kinase activation also increases spike-wave seizures. Finally, systemic administration of metformin, an AMP-activated protein kinase agonist and common diabetes treatment, profoundly increased spike-wave seizures. These results advance the decades-old observation that glucose metabolism regulates thalamocortical circuit excitability by demonstrating that AMP-activated protein kinase and GABAB-receptor cooperativity is sufficient to provoke spike-wave seizures.


Subject(s)
Epilepsy, Absence , Hypoglycemia , AMP-Activated Protein Kinases/metabolism , Epilepsy, Absence/metabolism , Humans , Hypoglycemia/chemically induced , Hypoglycemia/metabolism , Receptors, GABA-B/metabolism , Seizures , Thalamus
6.
Front Oncol ; 12: 1043670, 2022.
Article in English | MEDLINE | ID: mdl-36727073

ABSTRACT

Background: Ovarian cancer cells aggregate during or after exfoliation from the primary tumor to form threedimensional spheroids. Spheroid formation provides a survival advantage during peritoneal dissemination in nutrient and oxygen-depleted conditions which is accompanied by a suppressed metabolic phenotype and fragmented mitochondria. Upon arrival to their metastatic sites, spheroids adhere to peritoneal organs and transition to a more epithelial phenotype to support outgrowth and invasion. In this study, we investigated the plasticity of mitochondrial morphology, dynamics, and function upon adhesion. Methods: Using our slow-developing (MOSE-L) and fast-developing (MOSE-LTICv) ovarian cancer models, we mimicked adhesion and reoxygenation conditions by plating the spheroids onto tissue culture dishes and changing culture conditions from hypoxia and low glucose to normoxia with high glucose levels after adhesion. We used Western Blot, microscopy and Seahorse analyses to determine the plasticity of mitochondrial morphology and functions upon adhesion, and the impact on proliferation and invasion capacities. Results: Independent of culture conditions, all spheroids adhered to and began to grow onto the culture plates. While the bulk of the spheroid was unresponsive, the mitochondrial morphology in the outgrowing cells was indistinguishable from cells growing in monolayers, indicating that mitochondrial fragmentation in spheroids was indeed reversible. This was accompanied by an increase in regulators of mitobiogenesis, PGC1a, mitochondrial mass, and respiration. Reoxygenation increased migration and invasion in both cell types but only the MOSE-L responded with increased proliferation to reoxygenation. The highly aggressive phenotype of the MOSE-LTICv was characterized by a relative independence of oxygen and the preservation of higher levels of proliferation, migration and invasion even in limiting culture conditions but a higher reliance on mitophagy. Further, the outgrowth in these aggressive cells relies mostly on proliferation while the MOSE-L cells both utilize proliferation and migration to achieve outgrowth. Suppression of proliferation with cycloheximide impeded aggregation, reduced outgrowth and invasion via repression of MMP2 expression and the flattening of the spheroids. Discussion: Our studies indicate that the fragmentation of the mitochondria is reversible upon adhesion. The identification of regulatory signaling molecules and pathways of these key phenotypic alterations that occur during primary adhesion and invasion is critical for the identification of druggable targets for therapeutic intervention to prevent aggressive metastatic disease.

7.
Front Physiol ; 12: 732308, 2021.
Article in English | MEDLINE | ID: mdl-34658916

ABSTRACT

Unc51 like autophagy activating kinase 1 (Ulk1), the primary autophagy regulator, has been linked to metabolic adaptation in skeletal muscle to exercise training. Here we compared the roles of Ulk1 and homologous Ulk2 in skeletal muscle insulin action following exercise training to gain more mechanistic insights. Inducible, skeletal muscle-specific Ulk1 knock-out (Ulk1-iMKO) mice and global Ulk2 knock-out (Ulk2-/-) mice were subjected to voluntary wheel running for 6 weeks followed by assessment of exercise capacity, glucose tolerance, and insulin signaling in skeletal muscle after a bolus injection of insulin. Both Ulk1-iMKO and Ulk2-/- mice had improved endurance exercise capacity post-exercise. Ulk1-iMKO did not improve glucose clearance during glucose tolerance test, while Ulk2-/- had only marginal improvement. However, exercise training-induced improvement of insulin action in skeletal muscle, indicated by Akt-S473 phosphorylation, was only impaired in Ulk1-iMKO. These data suggest that Ulk1, but not Ulk2, is required for exercise training-induced improvement of insulin action in skeletal muscle, implicating crosstalk between catabolic and anabolic signaling as integral to metabolic adaptation to energetic stress.

8.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34493662

ABSTRACT

Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5' AMP-activated protein kinase (AMPKα1/α2/ß2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Energy Metabolism , Mitochondria/pathology , Mitophagy , Physical Conditioning, Animal , AMP-Activated Protein Kinases/genetics , Animals , Humans , Male , Mice , Mitochondria/metabolism
10.
BMC Mol Cell Biol ; 22(1): 35, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34118887

ABSTRACT

BACKGROUND: Succinate dehydrogenase (Complex II) plays a dual role in respiration by catalyzing the oxidation of succinate to fumarate in the mitochondrial Krebs cycle and transferring electrons from succinate to ubiquinone in the mitochondrial electron transport chain (ETC). Mutations in Complex II are associated with a number of pathologies. SDHD, one of the four subunits of Complex II, serves by anchoring the complex to the inner-membrane and transferring electrons from the complex to ubiquinone. Thus, modeling SDHD dysfunction could be a valuable tool for understanding its importance in metabolism and developing novel therapeutics, however no suitable models exist. RESULTS: Via CRISPR/Cas9, we mutated SDHD in HEK293 cells and investigated the in vitro role of SDHD in metabolism. Compared to the parent HEK293, the knockout mutant HEK293ΔSDHD produced significantly less number of cells in culture. The mutant cells predictably had suppressed Complex II-mediated mitochondrial respiration, but also Complex I-mediated respiration. SDHD mutation also adversely affected glycolytic capacity and ATP synthesis. Mutant cells were more apoptotic and susceptible to necrosis. Treatment with the mitochondrial therapeutic idebenone partially improved oxygen consumption and growth of mutant cells. CONCLUSIONS: Overall, our results suggest that SDHD is vital for growth and metabolism of mammalian cells, and that respiratory and growth defects can be partially restored with treatment of a ubiquinone analog. This is the first report to use CRISPR/Cas9 approach to construct a knockout SDHD cell line and evaluate the efficacy of an established mitochondrial therapeutic candidate to improve bioenergetic capacity.


Subject(s)
Cell Proliferation/genetics , Mitochondria/metabolism , Succinate Dehydrogenase/genetics , Ubiquinone/analogs & derivatives , CRISPR-Cas Systems , Cell Proliferation/drug effects , Electron Transport Complex II , HEK293 Cells , Humans , Mutation , Ubiquinone/pharmacology
11.
Mitochondrion ; 58: 160-168, 2021 05.
Article in English | MEDLINE | ID: mdl-33744462

ABSTRACT

Complex I is the largest and most intricate of the protein complexes of mitochondrial electron transport chain (ETC). This L-shaped enzyme consists of a peripheral hydrophilic matrix domain and a membrane-bound orthogonal hydrophobic domain. The interfacial region between these two arms is known to be critical for binding of ubiquinone moieties and has also been shown to be the binding site of Complex I inhibitors. Knowledge on specific roles of the ETC interfacial region proteins is scarce due to lack of knockout cell lines and animal models. Here we mutated nuclear encoded NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2), one of three protein subunits of the interfacial region, in a human embryonic kidney cell line 293 using a CRISPR/Cas9 procedure. Disruption of NDUFS2 significantly decreased cell growth in medium, Complex I specific respiration, glycolytic capacity, ATP pool and cell-membrane integrity, but significantly increased Complex II respiration, ROS generation, apoptosis, and necrosis. Treatment with idebenone, a clinical benzoquinone currently being investigated in other indications, partially restored growth, ATP pool, and oxygen consumption of the mutant. Overall, our results suggest that NDUFS2 is vital for growth and metabolism of mammalian cells, and respiratory defects of NDUFS2 dysfunction can be partially corrected with treatment of an established mitochondrial therapeutic candidate. This is the first report to use CRISPR/Cas9 approach to construct a knockout NDUFS2 cell line and use the constructed mutant to evaluate the efficacy of a known mitochondrial therapeutic to enhance bioenergetic capacity.


Subject(s)
Apoptosis/physiology , Energy Metabolism/physiology , Mitochondria/metabolism , NADH Dehydrogenase/physiology , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/biosynthesis , CRISPR-Cas Systems , Glycolysis , HEK293 Cells , Humans , Oxygen Consumption
12.
FASEB J ; 34(6): 7330-7344, 2020 06.
Article in English | MEDLINE | ID: mdl-32304342

ABSTRACT

Our understanding of the molecular mechanisms underlying adaptations to resistance exercise remains elusive despite the significant biological and clinical relevance. We developed a novel voluntary mouse weightlifting model, which elicits squat-like activities against adjustable load during feeding, to investigate the resistance exercise-induced contractile and metabolic adaptations. RNAseq analysis revealed that a single bout of weightlifting induced significant transcriptome responses of genes that function in posttranslational modification, metabolism, and muscle differentiation in recruited skeletal muscles, which were confirmed by increased expression of fibroblast growth factor-inducible 14 (Fn14), Down syndrome critical region 1 (Dscr1) and Nuclear receptor subfamily 4, group A, member 3 (Nr4a3) genes. Long-term (8 weeks) voluntary weightlifting training resulted in significantly increases of muscle mass, protein synthesis (puromycin incorporation in SUnSET assay) and mTOR pathway protein expression (raptor, 4e-bp-1, and p70S6K proteins) along with enhanced muscle power (specific torque and contraction speed), but not endurance capacity, mitochondrial biogenesis, and fiber type transformation. Importantly, weightlifting training profound improved whole-body glucose clearance and skeletal muscle insulin sensitivity along with enhanced autophagy (increased LC3 and LC3-II/I ratio, and decreased p62/Sqstm1). These data suggest that resistance training in mice promotes muscle adaptation and insulin sensitivity with simultaneous enhancement of autophagy and mTOR pathway.


Subject(s)
Adaptation, Physiological/physiology , Autophagy/physiology , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Muscle Contraction/physiology , Organelle Biogenesis , Ribosomal Protein S6 Kinases, 70-kDa/metabolism
13.
Sci Rep ; 10(1): 6095, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32269244

ABSTRACT

The common clinical symptoms of Friedreich's ataxia (FRDA) include ataxia, muscle weakness, type 2 diabetes and heart failure, which are caused by impaired mitochondrial function due to the loss of frataxin (FXN) expression. Endurance exercise is the most powerful intervention for promoting mitochondrial function; however, its impact on FRDA has not been studied. Here we found that mice with genetic knockout and knock-in of the Fxn gene (KIKO mice) developed exercise intolerance, glucose intolerance and moderate cardiac dysfunction at 6 months of age. These abnormalities were associated with impaired mitochondrial respiratory function concurrent with reduced iron regulatory protein 1 (Irp1) expression as well as increased oxidative stress, which were not due to loss of mitochondrial content and antioxidant enzyme expression. Importantly, long-term (4 months) voluntary running in KIKO mice starting at a young age (2 months) completely prevented the functional abnormalities along with restored Irp1 expression, improved mitochondrial function and reduced oxidative stress in skeletal muscle without restoring Fxn expression. We conclude that endurance exercise training prevents symptomatic onset of FRDA in mice associated with improved mitochondrial function and reduced oxidative stress. These preclinical findings may pave the way for clinical studies of the impact of endurance exercise in FRDA patients.


Subject(s)
Friedreich Ataxia/prevention & control , Physical Conditioning, Animal/methods , Running , Animals , Friedreich Ataxia/genetics , Friedreich Ataxia/physiopathology , Iron Regulatory Protein 1/genetics , Iron Regulatory Protein 1/metabolism , Iron-Binding Proteins/genetics , Mice , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Oxidative Stress , Frataxin
14.
Exerc Sport Sci Rev ; 47(3): 151-156, 2019 07.
Article in English | MEDLINE | ID: mdl-30985475

ABSTRACT

Regular exercise enhances mitochondrial function by promoting healthy mitochondrial remodeling, but the underlying mechanisms are not thoroughly understood. An emerging hypothesis suggests that, in addition to anabolic events such as mitochondria biogenesis, the selective degradation of dysfunctional mitochondria (i.e., mitophagy) also is a key component of exercise-mediated adaptations in striated muscle, which eventually leads to better mitochondrial functions.


Subject(s)
Exercise/physiology , Mitochondria, Heart/physiology , Mitochondria, Muscle/physiology , Mitophagy , Muscle, Skeletal/physiology , AMP-Activated Protein Kinase Kinases , Adaptation, Physiological , Humans , Physical Conditioning, Human , Protein Kinases/physiology
15.
Mitochondrion ; 44: 20-26, 2019 01.
Article in English | MEDLINE | ID: mdl-29274400

ABSTRACT

Assessment of structural and functional changes of mitochondria is vital for biomedical research as mitochondria are the power plants essential for biological processes and tissue/organ functions. Others and we have developed a novel reporter gene, pMitoTimer, which codes for a redox sensitive mitochondrial targeted protein that switches from green fluorescence protein (GFP) to red fluorescent protein (DsRed) when oxidized. It has been shown in transfected cells, transgenic C. elegans and Drosophila m., as well as somatically transfected adult skeletal muscle that this reporter gene allows quantifiable assessment of mitochondrial structure, oxidative stress, and lysosomal targeting of mitochondria-containing autophagosomes. Here, we generated CAG-CAT-MitoTimer transgenic mice using a transgene containing MitoTimer downstream of LoxP-flanked bacterial chloramphenicol acetyltransferase (CAT) gene with stop codon under the control of the cytomegalovirus (CMV) enhancer fused to the chicken ß-actin promoter (CAG). When CAG-CAT-MitoTimer mice were crossbred with various tissue-specific (muscle, adipose tissue, kidney, and pancreatic tumor) or global Cre transgenic mice, the double transgenic offspring showed MitoTimer expression in tissue-specific or global manner. Lastly, we show that hindlimb ischemia-reperfusion caused early, transient increases of mitochondrial oxidative stress, mitochondrial fragmentation and lysosomal targeting of autophagosomes containing mitochondria as well as a later reduction of mitochondrial content in skeletal muscle along with mitochondrial oxidative stress in sciatic nerve. Thus, we have generated conditional MitoTimer mice and provided proof of principle evidence of their utility to simultaneously assess mitochondrial structure, oxidative stress, and mitophagy in vivo in a tissue-specific, controllable fashion.


Subject(s)
Genes, Reporter , Mitochondria/pathology , Mitophagy , Oxidative Stress , Animals , Chloramphenicol O-Acetyltransferase/analysis , Chloramphenicol O-Acetyltransferase/genetics , Disease Models, Animal , Gene Expression , Ischemia/pathology , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/pathology , Promoter Regions, Genetic
16.
Sports Med Health Sci ; 1(1): 59-60, 2019 Dec.
Article in English | MEDLINE | ID: mdl-35782460

ABSTRACT

Human lifespan and life expectancy have increased worldwide, but the number of years that we spend free of chronic or debilitating disorders, known as healthspan, has not shifted along with increased lifespan. This unfavourable trend presents a tremendous global social-economical problem. We propose a model of promoting optimal human health with proactive, holistic interventions across the lifespan, which require multi-disciplinary, innovative approaches to research and care. We contend that this is the only hope that we have to face the challenges of population growth and aging, as well as the upward trend in non-communicable disease prevalence.

17.
Curr Opin Physiol ; 10: 96-101, 2019 Aug.
Article in English | MEDLINE | ID: mdl-32832743

ABSTRACT

The profound energetic demand of prolonged exercise imposed upon skeletal muscle and the heart is met by oxidation of substrate within mitochondria. As such, several coordinated events are initiated in order to maintain mitochondria, collectively known as mitochondrial quality control. In this review, we discuss how mitochondrial quality control functions to maintain the integrity of the reticulum and energy production in response to prolonged exercise, as well as the relevant signaling events that dictate these responses. Based upon the prevailing data in the field, we propose a model where exercise-mediated quality control may be chiefly regulated through local mechanisms, thus allowing for the remarkable precision in mitochondrial quality control events.

18.
J Appl Physiol (1985) ; 126(1): 193-201, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30433863

ABSTRACT

Ischemia-reperfusion (IR) due to temporary restriction of blood flow causes tissue/organ damages under various disease conditions, including stroke, myocardial infarction, trauma, and orthopedic surgery. In the limbs, IR injury to motor nerves and muscle fibers causes reduced mobility and quality of life. Endurance exercise training has been shown to increase tissue resistance to numerous pathological insults. To elucidate the impact of endurance exercise training on IR injury in skeletal muscle, sedentary and exercise-trained mice (5 wk of voluntary running) were subjected to ischemia by unilateral application of a rubber band tourniquet above the femur for 1 h, followed by reperfusion. IR caused significant muscle injury and denervation at neuromuscular junction (NMJ) as early as 3 h after tourniquet release as well as depressed muscle strength and neuromuscular transmission in sedentary mice. Despite similar degrees of muscle atrophy and oxidative stress, exercise-trained mice had significantly reduced muscle injury and denervation at NMJ with improved regeneration and functional recovery following IR. Together, these data suggest that endurance exercise training preserves motor nerve and myofiber structure and function from IR injury and promote functional regeneration. NEW & NOTEWORTHY This work provides the first evidence that preemptive voluntary wheel running reduces neuromuscular dysfunction following ischemia-reperfusion injury in skeletal muscle. These findings may alter clinical practices in which a tourniquet is used to modulate blood flow.


Subject(s)
Hindlimb/blood supply , Neuromuscular Junction , Physical Conditioning, Animal , Reperfusion Injury/prevention & control , Animals , Male , Mice , Muscle Contraction , Oxidative Stress
19.
Cell Cycle ; 18(1): 1-6, 2019 01.
Article in English | MEDLINE | ID: mdl-30558471

ABSTRACT

Maintenance of mitochondrial quality is essential for skeletal muscle function and overall health. Exercise training elicits profound adaptations to mitochondria to improve mitochondrial quality in skeletal muscle. We have recently demonstrated that acute exercise promotes removal of damaged/dysfunctional mitochondria via mitophagy in skeletal muscle during recovery through the Ampk-Ulk1 signaling cascade. In this Extra View, we explore whether Pink1 is stabilized on mitochondria following exercise as the signal for mitophagy. We observed no discernable presence of Pink1 in isolated mitochondria from skeletal muscle at any time point following acute exercise, in contrast to clear evidence of stabilization of Pink1 on mitochondria in HeLa cells following treatment with the uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Taken together, we conclude that Pink1 is not involved in exercise-induced mitophagy in skeletal muscle.


Subject(s)
Exercise/physiology , Mitophagy/genetics , Muscle, Skeletal/metabolism , Protein Kinases/genetics , AMP-Activated Protein Kinase Kinases , Animals , Autophagy-Related Protein-1 Homolog/genetics , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , HeLa Cells , Humans , Mice , Mitochondria/genetics , Mitochondria/physiology , Muscle, Skeletal/drug effects , Physical Conditioning, Animal , Signal Transduction/drug effects , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...