Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38642659

ABSTRACT

Our objective was to determine the impact of simultaneous removal of lactose plus low molecular weight solutes and milk serum proteins from skim milk by microfiltration (MF) on the chemical, physical and sensory properties of 3.4, 7.5, and 10.5% milk protein-based beverages before and after a direct steam injection thermal process. Skim milk was microfiltered at 50°C using 0.1 micron ceramic membranes with a diafiltration ratio of water to milk of about 2.5. Milk lactose, serum proteins, and soluble minerals were removed simultaneously to produce protein beverages containing from 3.4 to 10.5% true protein from skim milk and this process was replicated twice with different skim milks. The soluble mineral plus lactose content was very low and the aqueous phase of the beverages had a freezing point very close to water (i.e., -0.02°C). Beverage pH ranged from 7.19 to 7.41, with pH decreasing with increasing protein concentration. Overall, the beverages were whiter and blander than skim milk. When UHT processed with direct steam injection at a holding temp of 140°C for 2 to 3 s, there was some protein aggregation detected by particle size analysis (volume mean diameter of protein particles was 0.16 micron before and 22 microns after UHT). No sulfur/eggy flavor was detected and no browning was observed due to the UHT thermal treatment. Both apparent viscosity and sensory viscosity increased with increasing protein concentration and heat treatment.

2.
Foods ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611316

ABSTRACT

Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.

3.
J Dairy Sci ; 107(2): 695-710, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37709031

ABSTRACT

Our objective was to determine the effects of dipotassium phosphate (DKP) addition, heat treatments (no heat, high temperature, short time [HTST]: 72°C for 15 s, and direct steam injection UHT: 142°C for 2.3 s), and storage time on the soluble protein composition and mineral (P, Ca, K) concentration of the aqueous phase around casein micelles in 7.5% milk protein-based beverages made with liquid skim milk protein concentrate (MPC) and micellar casein concentrate (MCC). Milk protein concentrate was produced using a spiral wound polymeric membrane, and MCC was produced using a 0.1-µm ceramic membrane by filtration at 50°C. Two DKP concentrations were used (0% and 0.15% wt/wt) within each of the 3 heat treatments. All beverages had no other additives and ran through heat treatment without coagulation. Ultracentrifugation (2-h run at 4°C) supernatants of the beverages were collected at 1, 5, 8, 12, and 15-d storage at 4°C. Phosphorus, Ca, and K concentrations in the beverages and supernatants were measured using inductively coupled plasma spectrometry. Protein composition of supernatants was measured using Kjeldahl and sodium dodecyl sulfate-PAGE. Micellar casein concentrate and MPC beverages with 0.15% DKP had higher concentrations of supernatant protein, Ca, and P than beverages without DKP. Protein, Ca, and P concentrations were higher in MCC supernatant than in MPC supernatant when DKP was added, and these concentrations increased over storage time, especially when lower heat treatments (HTST or no heat treatment) had been applied. Dipotassium phosphate addition caused the dissociation of αS-, ß-, and κ-casein, and casein proteolysis products out of the casein micelles, and DKP addition explained over 70% of the increase in supernatant protein, P, and Ca concentrations. Dipotassium phosphate could be removed from 7.5% of protein beverages made with fresh liquid MCC and MPC (containing a residual lactose concentration of 0.6% to 0.7% and the proportional amount of soluble milk minerals), as these beverages maintain heat-processing stability without DKP addition.


Subject(s)
Caseins , Milk Proteins , Potassium Compounds , Animals , Milk Proteins/analysis , Caseins/chemistry , Micelles , Hot Temperature , Minerals , Beverages/analysis , Phosphates
4.
J Food Sci ; 89(1): 596-613, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37990832

ABSTRACT

This study evaluated the factors that motivate US consumers (18-65 years) to choose protein products derived from specific protein sources. An online survey was conducted. Participants who purchased protein products (n = 673) were shown agree/disagree questions, along with maximum difference (MaxDiff), constant sum, and Kano questions on factors surrounding protein choice. Last, follow-up qualitative interviews were conducted with 51 survey participants to further investigate consumer motivations behind protein choice. Survey participants conceptually desired a protein product or protein-fortified food that was a good source of protein, tasted great, and was healthy. Three clusters of consumers with distinct motivations for protein purchases were identified. Cluster 1 (C1) consumers (n = 176) desired plant-based, environmentally friendly products and valued sustainability label claims more than flavor/taste. Cluster 2 (C2) consumers (n = 271) were nutritionally conscious and desired high-protein healthy products that were also high in vitamins/minerals. Cluster 3 (C3) consumers (n = 226) showed the most loyalty to the products they currently purchased and were also most willing to try new products based on the recommendations. Cluster 1 consumers placed importance on protein sources, while C2 valued price most and C3 gave the highest value to flavor. In side-by-side protein comparisons, plant-based proteins were considered superior to dairy proteins in sustainability, health, ethics, and digestibility, while both protein types were at parity for naturalness, satiety, and taste across all consumers, but differences were documented among consumer clusters. Results from this study demonstrate that there are many different motivations for consumers to purchase protein products. These motivations can be applied to consumer education as well as the strategic positioning of protein products. Practical Application: This study investigated consumer perception of different protein types and the drivers of choice for protein types among distinct consumer groups. Further application of findings from this study may help guide the development and formulation of new products with a diverse range of protein sources.


Subject(s)
Motivation , Taste , Humans , Nigeria , Surveys and Questionnaires , Consumer Behavior , Plant Proteins , Food Preferences
5.
J Food Sci ; 89(1): 625-639, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37990835

ABSTRACT

There are many varieties of watermelons, providing distinct external and internal sensory attributes. This study used an online survey (n = 700) and focus groups (n = 25) to investigate consumer perception of whole watermelons. Rind color, sound of the melon, size, and price were the most important attributes for consumers when selecting a whole watermelon. Freshness was the most important whole watermelon characteristic, and watermelon freshness/quality was driven by sweetness, crispness, and juiciness. Consumers preferred seedless watermelons that had a light rind with dark green stripes, red flesh, an oval/oblong shape, firm and crisp flesh, a weight of approximately 2.2-5.5 kg, and labeling that described them as fresh, juicy, and sweet. Two consumer clusters were identified from quantitative survey data and were also representative of focus group participants: value consumers and watermelon enthusiasts. Watermelon enthusiasts were differentiated by a higher value for claims including local, product of USA, sustainably farmed, and organic. Watermelon purchase is quality driven: consumers will pay more for guaranteed sweetness and crispness. PRACTICAL APPLICATION: The ideal watermelon for all consumers is one that is dark green with stripes, is medium sized and oblong in shape, has a minimal rind-to-flesh ratio, and boasts dark, vibrant red flesh that is sweet, crisp, and juicy. All consumers want a better guarantee on watermelon quality because it is hard to predict sensory quality when selecting a melon. This study demonstrated the intrinsic and external drivers of liking for fresh watermelons and summarized a consumer watermelon purchase and consumption journey map that can guide further research and development of watermelons and provide insights on how to increase watermelon sales.


Subject(s)
Citrullus , Cucurbitaceae , Humans , Taste , Surveys and Questionnaires , Consumer Behavior , Perception
6.
J Dairy Sci ; 106(12): 8331-8340, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641294

ABSTRACT

Liquid micellar casein concentrate (MCC) is an ideal milk-based protein ingredient for neutral-pH ready-to-drink beverages. The texture and mouthfeel of liquid MCC-based beverages depend on the beverage protein content, as well as the composition of soluble proteins in the aqueous phase around the casein micelle. The objective of this study was to determine the composition of soluble proteins in the aqueous phase around the casein micelles in skim milk and liquid MCC containing 7.0% and 11.6% protein content. Skim milk was pasteurized and concentrated to 7% protein content by microfiltration and then to 18% protein content by ultrafiltration. The 18% MCC was then serially diluted with distilled water to produce 11.6% and 7.0% protein MCC. Skim milk, 7.0% MCC, and 11.6% MCC representing starting materials with different protein concentrations were each ultracentrifuged at 100,605 × g for 2 h. The ultracentrifugation for each of the starting materials was performed at 3 different temperatures: 4°C, 20°C, and 37°C. The ultracentrifugation supernatants were collected to represent the aqueous phase around the casein micelle in MCC solutions. The supernatants were analyzed by Kjeldahl to determine the crude protein, casein, and casein as a percentage of crude protein content, and by sodium dodecyl sulfate PAGE to determine the composition of the individual proteins. Most of the proteins in MCC supernatant (about 45%) were casein proteolysis products. The remaining proteins in the MCC supernatant consisted of a combination of intact αS-, ß-, and κ-caseins (about 40%) and serum proteins (14-18%). Concentrations of αS-casein and ß-casein in the supernatant increased with decreasing temperature, especially at higher protein concentrations. Temperature and interaction between temperature and protein explained about 80% of the variation in concentration of supernatant αS- and ß-caseins. Concentration of supernatant κ-casein, casein proteolysis products, and serum protein increased with increasing MCC protein concentration, and MCC protein concentration explained most of the variation in supernatant κ-casein, casein proteolysis products, and serum protein concentrations. Predicted MCC apparent viscosity was positively associated with the dissociation of αS- and ß-caseins. Optimal beverage viscosity could be achieved by controlling the dissociation of these proteins in MCC.


Subject(s)
Caseins , Micelles , Animals , Caseins/chemistry , Temperature , Milk Proteins/analysis , Milk/chemistry , Blood Proteins/analysis , Ultracentrifugation/veterinary
7.
J Dairy Sci ; 106(6): 3884-3899, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37105877

ABSTRACT

Our objective was to determine the effect of addition of dipotassium phosphate (DKP) at 3 different thermal treatments on color, viscosity, and sensory properties of 7.5% milk protein-based beverages during 15 d of storage at 4°C. Micellar casein concentrate (MCC) and milk protein concentrate (MPC) containing about 7.5% protein were produced from pasteurized skim milk using a 3×, 3-stage ceramic microfiltration process and a 3×, 3-stage polymeric ultrafiltration membrane process, respectively. The MCC and MPC were each split into 6 batches, based on thermal process and addition of DKP. The 6 batches were no postfiltration heat treatment with added DKP (0.15%), no postfiltration heat without added DKP (0%), postfiltration high-temperature, short time (HTST) with DKP, postfiltration HTST without DKP, postfiltration direct steam injection with DKP, and postfiltration direct steam injection without DKP. The 6 MCC milk-based beverages and the 6 MPC milk-based beverages were stored at 4°C. Viscosity, color, and sensory properties were determined over 15 d of refrigerated storage. MCC- and MPC-based beverages at 7.5% protein with and without 0.15% added dipotassium phosphate were successfully run through an HTST and direct steam injection thermal process. The 7.5% protein MCC-based beverage contained a higher calcium and phosphorus content (2,425 and 1,583 mg/L, respectively) than the 7.5% protein MPC-based beverages (2,141 and 1,338 mg/L, respectively). Pasteurization (HTST) had very little effect on beverage particle size distribution, whereas direct steam injection thermal processing produced protein aggregates with medians in the range of 10 and 175 µm for MPC beverages. A population of casein micelles at about 0.15 µm was found in both MCC- and MPC-based beverages. Larger particles in the 175-µm range were not detected in the MCC beverages. In general, the apparent viscosity (AV) of MCC beverages was higher than MPC beverages. Added DKP increased the AV of both MCC- and MPC-based beverages, while increasing heat treatment decreased AV. The AV of beverages with DKP increased during 15 d of 4°C of storage for both MCC and MPC, whereas there was very little change in AV during storage without DKP and a similar effect was observed for sensory viscosity scores. The L value of beverages was higher with higher heat treatment, but DKP addition decreased L value and sensory opacity greatly. Sulfur-eggy flavors were detected in MPC beverages, but not MCC-based beverages.


Subject(s)
Caseins , Milk Proteins , Animals , Milk Proteins/analysis , Viscosity , Hot Temperature , Steam , Micelles , Phosphates , Beverages/analysis , Food Handling
8.
J Food Sci ; 88(4): 1672-1683, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36847448

ABSTRACT

Cheese dips are an expanding category sold as ready to eat (RTE) in grocery stores or served hot in restaurants (RST). The purpose of this study was to determine key consumer attributes for cheese dips and evaluate if key drivers of purchase for cheese dips were distinct between grocery store or restaurant purchase. An online survey (n = 931) was conducted. Participants were asked two different sets of questions based on the location they most frequently purchased and consumed cheese dip in the past 6 months, at a restaurant (n = 480) or from a grocery store (n = 451). Consumers first evaluated psychographic and agree/disagree questions regarding cheese dip and then completed maximum difference exercises focused on color and other extrinsic cheese dip attributes. Finally, an adaptive choice-based conjoint was used to determine the relative importance of cheese dip attributes. Clustering of conjoint utility scores revealed differences in preference for spiciness, but similar preferences for other attributes within both consumer groups. RTE and RST consumers indicated that their ideal cheese dip was white in color, moderately thick, and of medium spiciness with small visible pepper pieces and jalapeno pepper flavor. For both consumer groups, spiciness was the most important characteristic of cheese dips, followed by package for RTE consumers and pepper flavor and consistency for RST consumers. Regardless of consumption context, consumers have similar ideal characteristics for cheese dips. PRACTICAL APPLICATION: The primary drivers of purchase for cheese dip consumers are similar, regardless of context. Segmentation of consumer preferences reveals opportunities for product innovation. The data collected will aid in product development of cheese dips that better meet the needs of consumers.


Subject(s)
Cheese , Humans , Taste , Restaurants , Food Preferences , Consumer Behavior , Perception
9.
J Food Sci ; 88(S1): 21-52, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36793208

ABSTRACT

Eating is a dynamic experience, and temporal sensory methods have been proposed to document how products change over the course of consumption or use (nonfood). A search of online databases yielded approximately 170 sources related to temporal evaluation of food products that were compiled and reviewed. This review summarizes the evolution of temporal methodologies (past), offers guidance in selecting appropriate methods (present), and provides insights into the future of temporal methodologies in the sensory space. Temporal methods have evolved to document a variety of characteristics in food products including how the intensity of a specific attribute changes over time (Time-Intensity), which specific attribute is dominant at each time during evaluation (Temporal Dominance of Sensations), which attributes are present at each time point during evaluation (Temporal Check-All-That-Apply), and many others (Temporal Order of Sensations, Attack-Evolution-Finish, and Temporal Ranking). In addition to documenting the evolution of temporal methods, this review considers the selection of an appropriate temporal method based on the objective and scope of research. When choosing a temporal method, researchers should also consider the selection of panelists to perform the temporal evaluation. Future temporal research should focus on validation of new temporal methods and explore how methods can be implemented and improved to add to the usefulness of temporal techniques for researchers.


Subject(s)
Taste Perception , Taste , Sensation
10.
Food Chem ; 406: 134998, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-36450193

ABSTRACT

Pea protein is a growing plant-based protein ingredient. Pea proteins have characteristic undesirable flavors, leading to challenges in ingredient applications. The objective of this study was to characterize the flavor of pea proteins using descriptive sensory analysis and instrumental volatile compound analyses. Seven sensory attributes were identified in most pea proteins at variable intensities: cereal/grain, cardboard, green pea, beany/yellow pea, bitter, umami, and astringent. Other attributes, cheesy, doughy, sulfur, pyrazine, fecal, sweet aromatic and salty taste, were distinguishing flavors of some pea proteins (p < 0.05). The key aroma-active compounds in pea proteins were hexanal, heptanal, benzaldehyde, methional, 2-hexanone, 2-heptanone, 1-octen-3-one, 2-nonanone, 1-nonen-3-one, 1-pentanol, 2-pentyl furan, 2-isopropyl-3-methoxypyrazine, 2,5-dimethyl-3-(3-methylbutyl)-pyrazine and 2-methyl-isoborneol (present in all representative samples). Volatile compounds responsible for the majority of sample variation included 2-methyl butanal, (Z)-3-hexanal, (E,E)-2,4-decadienal, 1-octen-3-one, 2-decanone, 1-pentanol, 1-octen-3-ol, geosmin and 2,3-diethyl-5-methyl pyrazine (p < 0.05). This study can facilitate product development and flavor masking of various pea protein applications.


Subject(s)
Pea Proteins , Volatile Organic Compounds , Odorants/analysis , Gas Chromatography-Mass Spectrometry , Taste , Volatile Organic Compounds/analysis , Olfactometry
11.
JDS Commun ; 3(3): 169-173, 2022 May.
Article in English | MEDLINE | ID: mdl-36338814

ABSTRACT

Ultrapasteurization (UP) extends the shelf life of milk. Direct steam injection (DSI) is commonly used for UP because milk is quickly heated and cooled. During this process, steam is directly injected into milk and removed by a vacuum cooler. Consumers do not prefer the flavor of DSI-UP milk compared with traditional high temperature short time (HTST) milk due to the higher cooked and eggy flavors of DSI-UP milk. The objective of this research was to characterize the effect of the vacuum cooler on the flavor of DSI-UP milk. Raw skim milk was pasteurized at 140°C for 2.3 s by DSI and homogenized at 20.7 MPa. By using a liquid sample port, steam-infused pasteurized milk was sampled after heating but before reaching the vacuum chamber. A septum was installed in the vacuum chamber to allow sampling of the removed volatiles by solid-phase microextraction (SPME) fiber followed by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) combined with a sulfur-selective flame photometric detector. Steam-infused milk and vacuum-cooled milk diluted to the same solids contents were evaluated by descriptive sensory analysis and volatile compound analysis. The entire experiment was replicated 3 times. Milks cooled by the vacuum cooler were lower in sweet aromatic, sulfur/eggy, and cooked flavors than milk sampled before the vacuum cooler. Volatile compounds removed by the vacuum cooler included the sweet aromatic flavor contributors furaneol, maltol, furfural, sotolon, 2-heptanone, γ-dodecalactone, γ-decalactone, and δ-decalactone, as well as the cooked and sulfur/eggy contributors hydrogen sulfide and dimethyl sulfide. The vacuum cooler applied during DSI-UP of milk is effective at removing steam and cooling UP milk, but this process may also remove important flavor compounds from fluid milk.

12.
J Dairy Sci ; 105(5): 3926-3938, 2022 May.
Article in English | MEDLINE | ID: mdl-35307175

ABSTRACT

Sensory and physical properties of 2 lemon-flavored beverages with 5% and 7.5% wt/wt nonfat dry milk (NFDM) at pH 2.5 were studied during storage. The 2 beverages had similar volatile compounds, but the 5% NFDM had higher aroma and lemon flavor, with a preferred appearance by consumers due to the lower turbidity and viscosity. After 28 d of storage at 4°C, lemon flavor decreased in the 5% NFDM beverage but was still more intense than the 7.5% one. During 70 d of storage, no microorganisms were detected, and the beverages were more stable when stored at 4°C than at room temperature according to changes of physical properties measured for appearance, turbidity, color, particle size, zeta potential, rheological properties, and transmission electron microscopy morphology. Findings of the present study suggest that NFDM may be used at 5% wt/wt to produce stable acidic dairy beverages with low turbidity when stored at 4°C.


Subject(s)
Beverages , Milk , Animals , Beverages/analysis , Milk/chemistry , Odorants , Particle Size , Viscosity
13.
J Dairy Sci ; 104(12): 12263-12273, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34531054

ABSTRACT

Our objective was to determine the effects of temperature and protein concentration on viscosity increase and gelation of liquid micellar casein concentrate (MCC) at protein concentrations from 6 to 20% during refrigerated storage. Skim milk (∼350 kg) was pasteurized (72°C for 16 s) and filtered through a ceramic microfiltration system to make MCC and replicated 3 times. The liquid MCC was immediately concentrated via a plate ultrafiltration system to 18% protein (wt/wt). The MCC was then diluted to various protein concentrations (6-18%, wt/wt). The highest protein concentrations of MCC formed gels almost immediately on cooling to 4°C, whereas lower concentrations of MCC were viscous liquids. Apparent viscosity (AV) determination using a rotational viscometer, gel strength using a compression test, and protein analysis of supernatants from ultracentrifugation by the Kjeldahl method were performed. The AV data were collected from MCC (6.54, 8.75, 10.66, and 13.21% protein) at 4, 20, and 37°C, and compression force test data were collected for MCC (15.6, 17.9, and 20.3% protein) over a period of 2-wk storage at 4°C. The maximum compressive load was compared at each time point to determine the changes in gel strength over time. Supernatants from MCC of 6.96 and 11.61% protein were collected after ultracentrifugation (100,605 × g for 2 h at 4, 20, and 37°C) and the nitrogen distributions (total, noncasein, casein, and nonprotein nitrogen) were determined. The protein and casein as a percent of true protein concentration in the liquid phase around casein micelles in MCC increased with increasing total MCC protein concentration and with decreasing temperature. Casein as a percent of true protein at 4°C in the liquid phase around casein micelles increased from about 16% for skim milk to about 78% for an MCC containing 11.6% protein. This increase was larger than expected, and this may promote increased viscosity. The AV of MCC solutions in the range of 6 to 13% casein increased with increasing casein concentration and decreasing temperature. We observed a temperature by protein concentration interaction, with AV increasing more rapidly with decreasing temperature at high protein concentration. The increase in AV with decreasing temperature may be due to the increase in protein concentration in the aqueous phase around the casein micelles. The MCC containing about 16 and 18% casein gelled upon cooling to form a gel that was likely a particle jamming gel. These gels increased in strength over 10 d of storage at 4°C, likely due either to the migration of casein (CN) out of the micelles and interaction of the nonmicellar CN to form a network that further strengthened the random loose jamming gel structure or to a gradual increase in voluminosity of the casein micelles during storage at 4°C.


Subject(s)
Caseins , Micelles , Animals , Gels , Milk , Viscosity
14.
J Dairy Sci ; 104(8): 8630-8643, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34099299

ABSTRACT

Our objective was to measure whey protein removal percentage from separated sweet whey using spiral-wound (SW) polymeric microfiltration (MF) membranes using a 3-stage, 3× process at 50°C and to compare the performance of polymeric membranes with ceramic membranes. Pasteurized, separated Cheddar cheese whey (1,080 kg) was microfiltered using a polymeric 0.3-µm polyvinylidene (PVDF) fluoride SW membrane and a 3×, 3-stage MF process. Cheese making and whey processing were replicated 3 times. There was no detectable level of lactoferrin and no intact α- or ß-casein detected in the MF permeate from the 0.3-µm SW PVDF membranes used in this study. We found BSA and IgG in both the retentate and permeate. The ß-lactoglobulin (ß-LG) and α-lactalbumin (α-LA) partitioned between retentate and permeate, but ß-LG passage through the membrane was retarded more than α-LA because the ratio of ß-LG to α-LA was higher in the MF retentate than either in the sweet whey feed or the MF permeate. About 69% of the crude protein present in the pasteurized separated sweet whey was removed using a 3×, 3-stage, 0.3-µm SW PVDF MF process at 50°C compared with 0.1-µm ceramic graded permeability MF that removed about 85% of crude protein from sweet whey. The polymeric SW membranes used in this study achieve approximately 20% lower yield of whey protein isolate (WPI) and a 50% higher yield of whey protein phospholipid concentrate (WPPC) under the same MF processing conditions as ceramic MF membranes used in the comparison study. Total gross revenue from the sale of WPI plus WPPC produced with polymeric versus ceramic membranes is influenced by both the absolute market price for each product and the ratio of market price of these 2 products. The combination of the market price of WPPC versus WPI and the influence of difference in yield of WPPC and WPI produced with polymeric versus ceramic membranes yielded a price ratio of WPPC versus WPI of 0.556 as the cross over point that determined which membrane type achieves higher total gross revenue return from production of these 2 products from separated sweet whey. A complete economic engineering study comparison of the WPI and WPPC manufacturing costs for polymeric versus ceramic MF membranes is needed to determine the effect of membrane material selection on long-term processing costs, which will affect net revenue and profit when the same quantity of sweet whey is processed under various market price conditions.


Subject(s)
Filtration , Whey , Animals , Blood Proteins , Filtration/veterinary , Food Handling , Membranes, Artificial , Milk , Milk Proteins , Whey Proteins
15.
J Dairy Sci ; 104(7): 7534-7543, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33814142

ABSTRACT

Our research objective was to measure percent removal of whey protein from separated sweet whey using 0.1-µm uniform transmembrane pressure ceramic microfiltration (MF) membranes in a sequential batch 3-stage, 3× process at 50°C. Cheddar cheese whey was centrifugally separated to remove fat at 72°C and pasteurized (72°C for 15 s), cooled to 4°C, and held overnight. Separated whey (375 kg) was heated to 50°C with a plate heat exchanger and microfiltered using a pilot-scale ceramic 0.1-µm uniform transmembrane pressure MF system in bleed-and-feed mode at 50°C in a sequential batch 3-stage (2 diafiltration stages) process to produce a 3× MF retentate and MF permeate. Feed, retentate, and permeate samples were analyzed for total nitrogen, noncasein nitrogen, and nonprotein nitrogen using the Kjeldahl method. Sodium dodecyl sulfate-PAGE analysis was also performed on the whey feeds, retentates, and permeates from each stage. A flux of 54 kg/m2 per hour was achieved with 0.1-µm ceramic uniform transmembrane pressure microfiltration membranes at 50°C. About 85% of the total nitrogen in the whey feed passed though the membrane into the permeate. No passage of lactoferrin from the sweet whey feed of the MF into the MF permeate was detected. There was some passage of IgG, bovine serum albumen, glycomacropeptide, and casein proteolysis products into the permeate. ß-Lactoglobulin was in higher concentration in the retentate than the permeate, indicating that it was partially blocked from passage through the ceramic MF membrane.


Subject(s)
Filtration , Whey , Animals , Blood Proteins , Ceramics , Filtration/veterinary , Food Handling , Membranes, Artificial , Milk , Whey Proteins
16.
Foods ; 9(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260555

ABSTRACT

Perception and liking among Irish, German and USA consumers of salted butter produced from different feed systems-outdoor grass (FS-GRSS), grass/clover (FS-CLVR), and indoor concentrate (FS-TMR)-was investigated. A consumer study was conducted in all three countries. Irish and German assessors participated in ranking descriptive analysis (RDA), whereas descriptive analysis (DA) was carried out by a trained panel in the USA. Volatile analysis was conducted to identify differences in aroma compounds related to cow diet. Overall, there was no significant difference in overall liking of the butters, among USA, German and Irish consumers, although cross-cultural preferences were evident. Sensory attribute differences based on cow diet were evident across the three countries, as identified by German and Irish assessors and trained USA panelists, which are likely influenced by familiarity. The abundance of specific volatile aromatic compounds, especially some aldehydes and ketones, were significantly impacted by the feed system and may also contribute to some of the perceived sensory attribute differences in these butters.

17.
J Dairy Sci ; 103(9): 7639-7654, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32819617

ABSTRACT

Fluid milk consumption among children has declined for decades. Adequate consumption of milk and dairy products, especially during childhood, has beneficial health outcomes for growth, development, and reduced risk of osteoporosis, hypertension, obesity, and cancer during adulthood. Satisfaction with milk flavor, perceived health benefits derived from milk, and habit are primary drivers of lifelong milk consumption. Child preferences and attitudes for milk may differ from those of adults, and as such, understanding and fulfilling the needs of children is crucial to reverse the decline in milk consumption. School meal programs make fluid milk accessible to millions of children each day; however, regulations and school lunch procurement systems in the United States sometimes make it difficult to provide novel or value-added milk products in these programs. Total consumption of all milk types in US schools declined by 14.2% from 2008 to 2017, and the percentage of children participating in the school lunch program has also declined. This decline has also been driven by declining average daily participation in the school meal program and may also reflect children's dissatisfaction with the sensory characteristics and the form of milk offered in schools. The change in form of milk offered in schools to lower fat and lower added sugar content in the United States has been driven by government-mandated school lunch calorie and fat requirements. This review describes the current milk consumption trends among children; the structure and basic requirements of the school lunch program in total and for milk; and the intrinsic, extrinsic, and environmental factors that influence child perception, preference, and consumption of fluid milk in the US school system.


Subject(s)
Food Services , Lunch , Milk , Schools , Animals , Energy Intake , Humans , Sugars , United States
18.
J Texture Stud ; 51(1): 78-91, 2020 02.
Article in English | MEDLINE | ID: mdl-31323134

ABSTRACT

Hydrocolloids are added to alter rheological properties of beverages but have other properties that can contribute to overall taste and texture perception. In this study, tapioca starch and λ-carrageenan were used to determine how hydrocolloid type, viscosity level (4-6 mPa·s, 25-30 mPa·s, and 50-60 mPa·s at 50 s-1 ), and complexity of the system (aqueous, skim milk, or whole milk) influence sensory taste and texture of fluids. All fluids were shear thinning; however, skim milk and whole milk solutions that contained carrageenan had much higher low shear viscosity and lower high shear viscosity than those with starch. There was a significant effect of viscosity level on sensory perception of consistency, creamy/oily, mouthcoating, and residual mouthcoating in aqueous, skim milk, and whole milk beverages, and a weak effect of hydrocolloid type. However, normalizing creamy/oily, paste, and mouthcoating against sensory consistency removed the effect of hydrocolloid type. Flavors (cream, cooked, cardboard, and melon/cardboard) were associated with the type of hydrocolloid and milk protein ingredient. Temporal dominance of sensations showed that samples exhibit similar temporal sensory profiles, although the addition of hydrocolloids enhanced dominance of creaminess even in samples without fat. Hydrocolloid type did not significantly influence mouthcoating or the persistence of astringency. Additionally, increasing viscosity from 3 to 74 mPa·s at 50 s-1 did not suppress perceived sweet or salty taste. The results suggest that in fluid systems with viscosity levels typically found in beverages, textural properties are determined by viscosity and independent of the type of hydrocolloid.


Subject(s)
Beverages , Colloids , Proteins , Taste Perception/physiology , Animals , Beverages/analysis , Carrageenan , Colloids/analysis , Humans , Milk , Rheology , Taste , Viscosity
19.
J Dairy Sci ; 102(10): 8670-8690, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31351726

ABSTRACT

Our goal was to determine the effect of systematically controlled variation in milk fat, true protein, casein, and serum protein concentrations on the sensory color, flavor and texture properties, instrumental color and viscosity, and milk fat globule size distribution of milk-based beverages. Beverage formulations were based on a complete balanced 3-factor (fat, true protein, and casein as a percentage of true protein) design with 3 fat levels (0.2, 1.0, and 2.0%), 4 true protein (TP) levels (3.00, 3.67, 4.34, and 5.00%) within each fat level, and 5 casein as a percentage of true protein (CN%TP) levels (5, 25, 50, 75, and 80%) within each protein level (for a total of 60 formulations within each of 2 replicates). Instrumental measures of Hunter L and a values and Commission Internationale de l'Éclairage (CIE) b* values, instrumental viscosity, particle size, flavor, sensory texture and sensory appearance evaluations were done on each pasteurized/homogenized beverage formulation. Within each of the 3 fat levels, higher serum protein concentration drove higher aroma intensity, sweet aromatic, cooked/sulfur, cardboard/doughy flavors, and sensory yellowness scores, whereas higher casein concentration drove higher instrumental viscosity in milk protein beverages. Increasing serum protein concentration increased yellowness, sweet aromatic, aroma intensity, cooked/sulfur, and cardboard/doughy flavors across all fat levels and also had the largest effect on L, a, and b* values, sensory whiteness, and opacity within each fat level. Increases in true protein increased throat cling and astringency intensities. Increases in fat concentration were correlated with higher L, a, and b* values, larger particle size, and increased sensory whiteness, mouth coating, cooked/milky, and milkfat flavors. Multiple linear regression of L, a, and b* values produced better predictions of sensory whiteness and yellowness of pasteurized milk protein beverages than simple linear regression of L or b* values, respectively. Formulating milk protein beverages to a higher true protein level increased astringency regardless of fat level. When formulating milk protein beverages, a product developer has a wide range of milk-based protein ingredient choices that differ in price and change price relationship across time. Understanding the expected relative effect of different milk protein ingredients on the textural and flavor characteristics of milk-based beverages could be used to help guide product reformulation decisions and ingredient choices to achieve a specific sensory profile while controlling total beverage ingredient cost.


Subject(s)
Beverages , Blood Proteins/analysis , Milk Proteins/analysis , Milk , Taste , Adult , Animals , Beverages/analysis , Caseins , Cattle , Color , Female , Glycolipids/analysis , Glycoproteins/analysis , Humans , Lipid Droplets , Male , Middle Aged , Milk/chemistry , Particle Size , Pasteurization , Viscosity
20.
J Dairy Sci ; 101(5): 3900-3909, 2018 May.
Article in English | MEDLINE | ID: mdl-29501331

ABSTRACT

Traditionally most protein ingredients are sold as a powder due to transport ease and longer shelf life. Many high-protein powder ingredients such as milk protein concentrate with 85% protein and micellar casein concentrate have poor rehydration properties (e.g., solubility) after storage, which might limit their use. An alternative to the production of dried protein ingredients is the option to use liquid protein ingredients, which saves the cost of spray drying, but may also improve flavor and offer different functional properties. The objective of this study was to determine the effect of spray drying on the flavor and functionality of high-protein ingredients. Liquid and dried protein ingredients (whey protein concentrate with 80% protein, whey protein isolate, milk protein concentrate with 85% protein, and micellar casein concentrate) were manufactured from the same lot of milk at the North Carolina State University pilot plant. Functional differences were evaluated by measurement of foam stability and heat stability. Heat stability was evaluated by heating at 90°C for 0, 10, 20, and 30 min followed by micro-bicinchoninic acid and turbidity loss measurements. Sensory properties were evaluated by descriptive analysis, and volatile compounds were evaluated by gas chromatography-mass spectrometry. No differences were detected in protein heat stability between liquids and powders when spray dried under these conditions. Whey protein concentrate with 80% protein (liquid or spray dried) did not produce a foam. All powders had higher aroma intensity and cooked flavors compared with liquids. Powder proteins also had low but distinct cardboard flavor concurrent with higher relative abundance of volatile aldehydes compared with liquids. An understanding of how spray drying affects both flavor and functionality may help food processors better use the ingredients they have available to them.


Subject(s)
Flavoring Agents/chemistry , Food Handling/methods , Milk Proteins/chemistry , Animals , Caseins/chemistry , Cattle , Food Handling/instrumentation , Gas Chromatography-Mass Spectrometry , Humans , Micelles , Milk/chemistry , North Carolina , Odorants/analysis , Powders/chemistry , Taste , Whey Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...