Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 245: 125422, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37330089

ABSTRACT

Insect Odorant Binding Proteins (OBPs) constitute important components of their olfactory apparatus, as they are essential for odor recognition. OBPs undergo conformational changes upon pH change, altering their interactions with odorants. Moreover, they can form heterodimers with novel binding characteristics. Anopheles gambiae OBP1 and OBP4 were found capable of forming heterodimers possibly involved in the specific perception of the attractant indole. In order to understand how these OBPs interact in the presence of indole and to investigate the likelihood of a pH-dependent heterodimerization mechanism, the crystal structures of OBP4 at pH 4.6 and 8.5 were determined. Structural comparison to each other and with the OBP4-indole complex (3Q8I, pH 6.85) revealed a flexible N-terminus and conformational changes in the α4-loop-α5 region at acidic pH. Fluorescence competition assays showed a weak binding of indole to OBP4 that becomes further impaired at acidic pH. Additional Molecular Dynamic and Differential Scanning Calorimetry studies displayed that the influence of pH on OBP4 stability is significant compared to the modest effect of indole. Furthermore, OBP1-OBP4 heterodimeric models were generated at pH 4.5, 6.5, and 8.5, and compared concerning their interface energy and cross-correlated motions in the absence and presence of indole. The results indicate that the increase in pH may induce the stabilization of OBP4 by increasing its helicity, thereby enabling indole binding at neutral pH that further stabilizes the protein and possibly promotes the creation of a binding site for OBP1. A decrease in interface stability and loss of correlated motions upon transition to acidic pH may provoke the heterodimeric dissociation allowing indole release. Finally, we propose a potential OBP1-OBP4 heterodimer formation/disruption mechanism induced by pH change and indole binding.


Subject(s)
Anopheles , Receptors, Odorant , Animals , Odorants , Anopheles/chemistry , Anopheles/metabolism , Receptors, Odorant/chemistry , Binding Sites , Indoles/chemistry , Hydrogen-Ion Concentration , Insect Proteins/metabolism
2.
Int J Biol Macromol ; 237: 124009, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36921814

ABSTRACT

Among several proteins participating in the olfactory perception process of insects, Odorant Binding Proteins (OBPs) are today considered valid targets for the discovery of compounds that interfere with their host-detection behavior. The 3D structures of Anopheles gambiae mosquito AgamOBP1 in complex with the known synthetic repellents DEET and Icaridin have provided valuable information on the structural characteristics that govern their selective binding. However, no structure of a plant-derived repellent bound to an OBP has been available until now. Herein, we present the novel three-dimensional crystal structures of AgamOBP5 in complex with two natural phenolic monoterpenoid repellents, Carvacrol and Thymol, and the MPD molecule. Structural analysis revealed that both monoterpenoids occupy a binding site (Site-1) by adopting two alternative conformations. An additional Carvacrol was also bound to a secondary site (Site-2) near the central cavity entrance. A protein-ligand hydrogen-bond network supplemented by van der Waals interactions spans the entire binding cavity, bridging α4, α6, and α3 helices and stabilizing the overall structure. Fluorescence competition and Differential Scanning Calorimetry experiments verified the presence of two binding sites and the stabilization effect on AgamOBP5. While Carvacrol and Thymol bind to Site-1 with equal affinity in the submicromolar range, they exhibit a significantly lower and distinct binding capacity for Site-2 with Kd's of ~7 µΜ and ~18 µΜ, respectively. Finally, a comparison of AgamOBP5 complexes with the AgamOBP4-Indole structure revealed that variations of ligand-interacting aminoacids such as A109T, I72M, A112L, and A105T cause two structurally similar and homologous proteins to display different binding specificities.


Subject(s)
Anopheles , Insect Repellents , Receptors, Odorant , Animals , Insect Repellents/chemistry , Insect Repellents/metabolism , Thymol/metabolism , Ligands , Anopheles/chemistry , Anopheles/metabolism , Monoterpenes/metabolism , Receptors, Odorant/chemistry
3.
J Agric Food Chem ; 68(37): 10191-10199, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32840370

ABSTRACT

Anthocyanins (ACNs) are dietary phytochemicals with an acknowledged therapeutic significance. Pomegranate juice (PJ) is a rich source of ACNs with potential applications in nutraceutical development. Glycogen phosphorylase (GP) catalyzes the first step of glycogenolysis and is a molecular target for the development of antihyperglycemics. The inhibitory potential of the ACN fraction of PJ is assessed through a combination of in vitro assays, ex vivo investigation in hepatic cells, and X-ray crystallography studies. The ACN extract potently inhibits muscle and liver isoforms of GP. Affinity crystallography reveals the structural basis of inhibition through the binding of pelargonidin-3-O-glucoside at the GP inhibitor site. The glucopyranose moiety is revealed as a major determinant of potency as it promotes a structural binding mode different from that observed for other flavonoids. This inhibitory effect of the ACN scaffold and its binding mode at the GP inhibitor binding site may have significant implications for future structure-based drug design endeavors.


Subject(s)
Anthocyanins/chemistry , Enzyme Inhibitors/chemistry , Fruit and Vegetable Juices/analysis , Glycogen Phosphorylase/chemistry , Plant Extracts/chemistry , Pomegranate/chemistry , Amino Acid Motifs , Animals , Binding Sites , Crystallography, X-Ray , Glycogen Phosphorylase/antagonists & inhibitors , Hep G2 Cells , Humans , Kinetics , Protein Binding , Rabbits
4.
Insect Biochem Mol Biol ; 98: 48-61, 2018 07.
Article in English | MEDLINE | ID: mdl-29751047

ABSTRACT

In this work we report a fast and efficient virtual screening protocol for discovery of novel bioinspired synthetic mosquito repellents with lower volatility and, in all likelihood, increased protection time as compared with their plant-derived parental compounds. Our screening protocol comprises two filtering steps. The first filter is based on the shape and chemical similarity to known plant-derived repellents, whereas the second filter is based on the predicted similarity of the ligand's binding mode to the Anopheles gambiae odorant binding protein (AgamOBP1) relative to that of DEET and Icaridin to the same OBP. Using this protocol, a chemical library containing 42,755 synthetic molecules was screened in silico and sixteen selected compounds were tested for their affinity to AgamOBP1 in vitro and repellence against A. gambiae female mosquitoes using a warm-body repellent assay. One of them showed DEET-like repellence (91%) but with significantly lower volatility (2.84 × 10-6 mmHg) than either DEET (1.35 × 10-3 mmHg) or its parental cuminic acid (3.08 × 10-3 mmHg), and four other compounds were found to exhibit repellent indices between 69 and 79%. Overall, a correlation was not evident between repellence and OBP-binding strength. In contrast, a correlation between binding mode and repellence was found.


Subject(s)
Drug Discovery/methods , Insect Repellents/analysis , Receptors, Odorant/agonists , Animals , Culicidae , Female , Guinea Pigs , Ligands , Molecular Docking Simulation , Small Molecule Libraries
5.
Cell Mol Life Sci ; 74(2): 319-338, 2017 01.
Article in English | MEDLINE | ID: mdl-27535661

ABSTRACT

Anopheles gambiae Odorant Binding Protein 1 in complex with the most widely used insect repellent DEET, was the first reported crystal structure of an olfactory macromolecule with a repellent, and paved the way for OBP1-structure-based approaches for discovery of new host-seeking disruptors. In this work, we performed STD-NMR experiments to directly monitor and verify the formation of a complex between AgamOBP1 and Icaridin, an efficient DEET alternative. Furthermore, Isothermal Titration Calorimetry experiments provided evidence for two Icaridin-binding sites with different affinities (Kd = 0.034 and 0.714 mM) and thermodynamic profiles of ligand binding. To elucidate the binding mode of Icaridin, the crystal structure of AgamOBP1•Icaridin complex was determined at 1.75 Å resolution. We found that Icaridin binds to the DEET-binding site in two distinct orientations and also to a novel binding site located at the C-terminal region. Importantly, only the most active 1R,2S-isomer of Icaridin's equimolar diastereoisomeric mixture binds to the AgamOBP1 crystal, providing structural evidence for the possible contribution of OBP1 to the stereoselectivity of Icaridin perception in mosquitoes. Structural analysis revealed two ensembles of conformations differing mainly in spatial arrangement of their sec-butyl moieties. Moreover, structural comparison with DEET indicates a common recognition mechanism for these structurally related repellents. Ligand interactions with both sites and binding modes were further confirmed by 2D 1H-15N HSQC NMR spectroscopy. The identification of a novel repellent-binding site in AgamOBP1 and the observed structural conservation and stereoselectivity of its DEET/Icaridin-binding sites open new perspectives for the OBP1-structure-based discovery of next-generation insect repellents.


Subject(s)
Anopheles/metabolism , Insect Repellents/chemistry , Insect Repellents/metabolism , Piperidines/chemistry , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism , Animals , Calorimetry , Crystallography, X-Ray , DEET/chemistry , DEET/metabolism , Fluorescence , Hydrogen Bonding , Models, Molecular , Piperidines/metabolism , Protein Binding , Protein Multimerization , Proton Magnetic Resonance Spectroscopy , Solutions , Static Electricity , Stereoisomerism
6.
J Biol Chem ; 288(46): 33427-38, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24097978

ABSTRACT

Much physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery. Here, we describe the three-dimensional structure of an A. gambiae "Plus-C" group OBP (AgamOBP48), which exhibits the second highest expression levels in female antennae. This structure represents the first example of a three-dimensional domain-swapped dimer in dipteran species. A combined binding site is formed at the dimer interface by equal contribution of each monomer. Structural comparisons with the monomeric AgamOBP47 revealed that the major structural difference between the two Plus-C proteins localizes in their N- and C-terminal regions, and their concerted conformational change may account for monomer-swapped dimer conversion and furthermore the formation of novel binding pockets. Using a combination of gel filtration chromatography, differential scanning calorimetry, and analytical ultracentrifugation, we demonstrate the AgamOBP48 dimerization in solution. Eventually, molecular modeling calculations were used to predict the binding mode of the most potent synthetic ligand of AgamOBP48 known so far, discovered by ligand- and structure-based virtual screening. The structure-aided identification of multiple OBP binders represents a powerful tool to be employed in the effort to control transmission of the vector-borne diseases.


Subject(s)
Anopheles/chemistry , Insect Proteins/chemistry , Lipocalins/chemistry , Protein Multimerization , Animals , Anopheles/genetics , Anopheles/metabolism , Arthropod Antennae/chemistry , Arthropod Antennae/metabolism , Crystallography, X-Ray , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Lipocalins/genetics , Lipocalins/metabolism , Protein Structure, Quaternary , Protein Structure, Tertiary , Structure-Activity Relationship
7.
Proteins ; 80(1): 206-20, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22038794

ABSTRACT

Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg(2+) ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg(2+) ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells.


Subject(s)
Adenylate Kinase/chemistry , Nuclear Proteins/chemistry , Adenosine Diphosphate/chemistry , Adenylate Kinase/genetics , Adenylate Kinase/metabolism , Amino Acid Motifs , Amino Acid Substitution , Catalytic Domain , Coiled Bodies/metabolism , Computer Simulation , Crystallography, X-Ray , DNA-Binding Proteins , HeLa Cells , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Software , Sulfates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...