Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 183(4): 918-934.e49, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33113354

ABSTRACT

Learning valence-based responses to favorable and unfavorable options requires judgments of the relative value of the options, a process necessary for species survival. We found, using engineered mice, that circuit connectivity and function of the striosome compartment of the striatum are critical for this type of learning. Calcium imaging during valence-based learning exhibited a selective correlation between learning and striosomal but not matrix signals. This striosomal activity encoded discrimination learning and was correlated with task engagement, which, in turn, could be regulated by chemogenetic excitation and inhibition. Striosomal function during discrimination learning was disturbed with aging and severely so in a mouse model of Huntington's disease. Anatomical and functional connectivity of parvalbumin-positive, putative fast-spiking interneurons (FSIs) to striatal projection neurons was enhanced in striosomes compared with matrix in mice that learned. Computational modeling of these findings suggests that FSIs can modulate the striosomal signal-to-noise ratio, crucial for discrimination and learning.


Subject(s)
Aging/pathology , Corpus Striatum/pathology , Huntington Disease/pathology , Learning , Action Potentials , Animals , Behavior, Animal , Biomarkers/metabolism , Corpus Striatum/physiopathology , Discrimination Learning , Disease Models, Animal , Huntington Disease/physiopathology , Interneurons/pathology , Mice, Transgenic , Models, Neurological , Nerve Net/physiopathology , Parvalbumins/metabolism , Photometry , Reward , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...