Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 1(4)2016.
Article in English | MEDLINE | ID: mdl-27547826

ABSTRACT

FLO11 encodes a yeast cell wall flocculin that mediates a variety of adhesive phenotypes in Saccharomyces cerevisiae. Flo11p is implicated in many developmental processes, including flocculation, formation of pseudohyphae, agar invasion, and formation of microbial mats and biofilms. However, Flo11p mediates different processes in different yeast strains. To investigate the mechanisms by which FLO11 determines these differences in colony morphology, flocculation, and invasion, we studied gene structure, function, and expression levels. Nonflocculent Saccharomyces cerevisiae Σ1278b cells exhibited significantly higher FLO11 mRNA expression, especially in the stationary phase, than highly flocculent S. cerevisiae var. diastaticus. The two strains varied in cell surface hydrophobicity, and Flo11p contributed significantly to surface hydrophobicity in S. cerevisiae var. diastaticus but not in strain Σ1278b. Sequencing of the FLO11 gene in S. cerevisiae var. diastaticus revealed strain-specific differences, including a 15-amino-acid insertion in the adhesion domain. Flo11p adhesion domains from strain Σ1278b and S. cerevisiae var. diastaticus were expressed and used to coat magnetic beads. The adhesion domain from each strain bound preferentially to homologous cells, and the preferences were independent of the cells in which the adhesion domains were produced. These results are consistent with the idea that strain-specific variations in the amino acid sequences in the adhesion domains cause different Flo11p flocculation activities. The results also imply that strain-specific differences in expression levels, posttranslational modifications, and allelic differences outside the adhesion domains have little effect on flocculation. IMPORTANCE As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the expression of Flo11-dependent phenotypes, including flocculation. In this study, we investigated the molecular basis of this strain-specific phenotypic variability. Our data indicate that strain-specific differences in the level of flocculation result from significant sequence differences in the FLO11 alleles and do not depend on quantitative differences in FLO11 expression or on surface hydrophobicity. We further have shown that beads coated with amino-terminal domain peptide bind preferentially to homologous cells. These data show that variability in the structure of the Flo11 adhesion domain may thus be an important determinant of membership in microbial communities and hence may drive selection and evolution.

2.
Eukaryot Cell ; 9(3): 393-404, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20038605

ABSTRACT

The occurrence of highly conserved amyloid-forming sequences in Candida albicans Als proteins (H. N. Otoo et al., Eukaryot. Cell 7:776-782, 2008) led us to search for similar sequences in other adhesins from C. albicans and Saccharomyces cerevisiae. The beta-aggregation predictor TANGO found highly beta-aggregation-prone sequences in almost all yeast adhesins. These sequences had an unusual amino acid composition: 77% of their residues were beta-branched aliphatic amino acids Ile, Thr, and Val, which is more than 4-fold greater than their prevalence in the S. cerevisiae proteome. High beta-aggregation potential peptides from S. cerevisiae Flo1p and C. albicans Eap1p rapidly formed insoluble amyloids, as determined by Congo red absorbance, thioflavin T fluorescence, and fiber morphology. As examples of the amyloid-forming ability of the native proteins, soluble glycosylphosphatidylinositol (GPI)-less fragments of C. albicans Als5p and S. cerevisiae Muc1p also formed amyloids within a few days under native conditions at nM concentrations. There was also evidence of amyloid formation in vivo: the surfaces of cells expressing wall-bound Als1p, Als5p, Muc1p, or Flo1p were birefringent and bound the fluorescent amyloid-reporting dye thioflavin T. Both of these properties increased upon aggregation of the cells. In addition, amyloid binding dyes strongly inhibited aggregation and flocculation. The results imply that amyloid formation is an intrinsic property of yeast cell adhesion proteins from many gene families and that amyloid formation is an important component of cellular aggregation mediated by these proteins.


Subject(s)
Amyloid/chemistry , Amyloid/metabolism , Cell Adhesion Molecules/metabolism , Fungal Proteins/metabolism , Yeasts/physiology , Amino Acid Sequence/genetics , Benzothiazoles , Birefringence , Calcium/pharmacology , Candida albicans/cytology , Candida albicans/physiology , Cell Adhesion Molecules/genetics , Cell Aggregation/drug effects , Cell Aggregation/physiology , Cell Proliferation/drug effects , Circular Dichroism , Congo Red/chemistry , Congo Red/pharmacology , Fungal Proteins/genetics , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microscopy, Fluorescence , Microscopy, Polarization , Models, Molecular , Peptide Fragments/chemical synthesis , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Protein Structure, Secondary/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spectrometry, Fluorescence , Thiazoles/chemistry , Thiazoles/pharmacology , Transfection , Yeasts/cytology
3.
Microbiol Mol Biol Rev ; 71(2): 282-94, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17554046

ABSTRACT

Fungi are nonmotile eukaryotes that rely on their adhesins for selective interaction with the environment and with other fungal cells. Glycosylphosphatidylinositol (GPI)-cross-linked adhesins have essential roles in mating, colony morphology, host-pathogen interactions, and biofilm formation. We review the structure and binding properties of cell wall-bound adhesins of ascomycetous yeasts and relate them to their effects on cellular interactions, with particular emphasis on the agglutinins and flocculins of Saccharomyces and the Als proteins of Candida. These glycoproteins share common structural motifs tailored to surface activity and biological function. After being secreted to the outer face of the plasma membrane, they are covalently anchored in the wall through modified GPI anchors, with their binding domains elevated beyond the wall surface on highly glycosylated extended stalks. N-terminal globular domains bind peptide or sugar ligands, with between millimolar and nanomolar affinities. These affinities and the high density of adhesins and ligands at the cell surface determine microscopic and macroscopic characteristics of cell-cell associations. Central domains often include Thr-rich tandemly repeated sequences that are highly glycosylated. These domains potentiate cell-to-cell binding, but the molecular mechanism of such an association is not yet clear. These repeats also mediate recombination between repeats and between genes. The high levels of recombination and epigenetic regulation are sources of variation which enable the population to continually exploit new niches and resources.


Subject(s)
Glycoproteins/physiology , Saccharomyces cerevisiae/physiology , Cell Adhesion/physiology , Cell Adhesion Molecules/physiology , Mating Factor , Peptides/physiology , Pheromones/physiology , Saccharomyces cerevisiae/genetics
4.
FEMS Yeast Res ; 5(12): 1151-6, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16043420

ABSTRACT

The FLO11-encoded flocculin is required for a variety of important phenotypes in Saccharomyces cerevisiae, including flocculation, adhesion to agar and plastic, invasive growth, pseudohyphae formation and biofilm development. We present evidence that Flo11p belongs to the Flo1-type class of flocculins rather than to the NewFlo class. Both Flo1-type and NewFlo yeast flocculation are inhibited by mannose. NewFlo flocculation, however, is also inhibited by several other carbohydrates including glucose, maltose and sucrose. These differences have in at least one case been shown to reflect differences in the structure of the carbohydrate-binding site of the flocculins. We report that Flo11p-dependent flocculation is inhibited by mannose, but not by glucose, maltose or sucrose. Furthermore, Flo11p contains a peptide sequence highly similar to one that has been shown to characterise Flo1-type flocculins. Further characterisation of the properties of Flo11p-dependent flocculation revealed that it is dependent on calcium, occurs only at cell densities greater than 1 x 10(8) ml(-1), and only occurs at acidic pH.


Subject(s)
Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Amino Acid Sequence , Biofilms/growth & development , Calcium/pharmacology , Cell Adhesion , Conserved Sequence , Glucose/pharmacology , Hydrogen-Ion Concentration , Maltose/pharmacology , Mannose/pharmacology , Membrane Glycoproteins , Membrane Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Sucrose/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...