Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 130(4): 933-940, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33539262

ABSTRACT

In the community setting, assessing spirometry in school-aged children is often limited by the unavailability of respirology technicians at the point-of-care. We developed a new technique called the Rapid Expiratory Occlusion Method (REOM) that measures respiratory resistance during normal breathing, without specialized training. The aim was to examine the concordance between respiratory resistance measured with the REOM and respiratory resistance measured by oscillometry on the tremoflo. Children aged 6-17 yr, with or without asthma, received respiratory resistance testing on the tremoflo, then on the REOM. Three to five replicates with a coefficient of variation ≤15% were obtained on each instrument; the primary outcome was the concordance between the average respiratory resistance on the REOM and that measured at 5 Hz (R5) on the tremoflo. Thirty-two children (11 girls; 21 boys) were enrolled with a mean age of 11.2 (range 6-17) yr; after excluding two children not meeting reproducibility criteria, 9 healthy controls, 15 controlled asthmatics, and 6 poorly controlled asthmatics were included. Resistance measured on the REOM showed a strong correlation with R5 measured on the tremoflo (P < 0.0001) with no significant differences on the Bland-Altman analyses. Children and their parents found the REOM easy to use and would consider for home use if recommended by their doctor. With the high concordance between resistance values measured on the REOM and that on the tremoflo combined with perceived ease of use, the REOM appears as a promising means for measuring lung function, thus supporting further testing of other psychometric properties.NEW & NOTEWORTHY We have developed a novel version of the interrupter technique to measure respiratory resistance. The Rapid Expiratory Occlusion Method (REOM) is a small handheld device that measures respiratory resistance and demonstrates excellent correlation with airway oscillometry. With its ease of use, REOM may be promising for use in community practice, patient's homes, and, if paired with a telemedicine application, could enable the healthcare provider to monitor patients in their homes.


Subject(s)
Airway Resistance , Lung , Child , Female , Humans , Male , Oscillometry , Reproducibility of Results , Respiratory Function Tests , Spirometry
2.
Int Immunopharmacol ; 10(11): 1344-53, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20831918

ABSTRACT

The blood vessels are one of the important target tissues for the mediators of inflammation and allergy; further cytokines affect them in a number of ways. We review the use of the isolated blood vessel mounted in organ baths as an important source of pharmacological information. While its use in the bioassay of vasoactive substances tends to be replaced with modern analytical techniques, contractility assays are effective to evaluate novel synthetic drugs, generating robust potency and selectivity data about agonists, partial agonists and competitive or insurmountable antagonists. For instance, the human umbilical vein has been used extensively to characterize ligands of the bradykinin B(2) receptors. Isolated vascular segments are live tissues that are intensely reactive, notably with the regulated expression of gene products relevant for inflammation (e.g., the kinin B(1) receptor and inducible nitric oxide synthase). Further, isolated vessels can be adapted as assays of unconventional proteins (cytokines such as interleukin-1, proteases of physiopathological importance, complement-derived anaphylatoxins and recombinant hemoglobin) and to the gene knockout technology. The well known cross-talks between different cell types, e.g., endothelium-muscle and nerve terminal-muscle, can be extended (smooth muscle cell interaction with resident or infiltrating leukocytes and tumor cells). Drug metabolism and distribution problems can be modeled in a useful manner using the organ bath technology, which, for all these reasons, opens a window on an intermediate level of complexity relative to cellular and molecular pharmacology on one hand, and in vivo studies on the other.


Subject(s)
Biological Assay , Blood Vessels/drug effects , Inflammation Mediators/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Organ Culture Techniques , Animals , Cell Communication/drug effects , Cell Communication/immunology , Cytokines/immunology , Gene Expression/drug effects , Gene Expression/immunology , Humans , Male , Mice , Muscle Contraction/immunology , Muscle, Smooth, Vascular/immunology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/immunology , Peptide Hydrolases/analysis , Peptide Hydrolases/immunology , Rats , Receptor, Bradykinin B2/analysis , Receptor, Bradykinin B2/immunology , Umbilical Veins/drug effects , Umbilical Veins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...